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In this paper branching rules for the reduction sp(2¥) ~ sp(2N — 2) X sp(2) are found, and a
new pattern for labeling vectors belonging to the base for unitary irreducible representations

BUIR’s is found.

|. INTRODUCTION

A few years ago the so-called missing label problem in
the algebra reductions

Sp(2N) \ sp(2N —2) X4y (la)
and

Sp(2N) \ sp(2N — 2) Xsp(2) (1b)

was investigated.! Here A4 ¥ is an operator from the Cartan

subalgebra sp(2N). Two different solutions on the set of the
J

(D) =

where the first row labels the UIR of the sp (2/¥) algebra, the
third row labels the UIR of the sp(2N — 2) algebra, and so
on. The eigenvalue for operator 4 § is denoted by &, and we
have

K k—1 ko

=Y Qf + D Q-2 rk.
p=1 p=1 p=1

All numbers entering to the pattern (3a) are positive inte-

gers and the branching rules for the reduction (1a) are con-
tained in the systems of inequalities

Qi>Ti>Q5>TE> - >QF>T5 >0,

(3b)

fork=~NN-—-1,...,1, (3¢)
T - ST 5 >0k 1T,
fork=NN-—-1,.,2. (3d)
|
ry ry ry .
Qy-! Qy-! Qy-!
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missing label operators were obtained, but only one solution,
referred to here as (b) [see (1a) and (1b)}], contains the
Casimir of the sp(2) subalgebra

Ciyy =2(ANY +A7NAN y +AZNAY o,

where A | are the algebra generators.

The problem of the branching rules for the reduction
(1a) was solved many years ago by Zhelobenko.” Denoting
shortly by |(2)) the vectors belonging to the base for uni-
tary irreducible representations (BUIR’s) we have

(2)

R 1
T¥ ., v
QYT (3a)
Q]
T

r
Hence we see that the same representation of the subalgebra
sp(2k — 2) XA ¥ may be found more than once in the (Qf,
QX,..., Q%) representation of the sp(2k) algebra and we use
k — 1 missing label numbers T%, T%,...,.T'% _, to distinquish
them [here Tk is dependent on the 4, , see (3b) ]. If we take
into the consideration the results of the Bincer paper’ we see
that the pattern (3a)—(3d) is appropriate for labeling the
states in the orthogonal base reduced on the chain (1a). In
Sec. IT we will find branching rules and an appropriate pat-
tern for the reduction (1b).

It. BRANCHING RULES FOR THE REDUCTION
Sp(2N) \ sp(2N— 2)xsp(2)

The following pattern may be used, intead of (3a), for
labeling the vectors in the BUIR’s of the sp(2/) algebra

Loy
N RV . chy
N—1
) N 1 ’ (42)
Q
hy
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where the meaning of the {}’s numbers is the same as in (3a).
The eigenvalues of the C7,, operators (2) are equal to
20, (0 + 2) and we have
k k-1 k—1
g=3 Qi+ 3 0 1-2 3 Tk,
p=1 p=1 rp=1
The branching rules for the reduction (1b) are contained in
the system of inequalities (k =N, N — 1,...,2)

(4b)

QU>Ti>Qk>TE> - >TF_ >0k, (4c)
L0~ >0 > >Th >0, (4d)
k—1 k—1
S+ HTi+2 Y TE,
p=a p=a+1

fora=12,. k-1, (4e)

hy =04,0, — 2400y — O (4f)

Proof: Let us consider two sets A* (4,,4,,...,4; ;M) and
A* (A,A5,....A;;M). The first one contains points X
= (xy,....x; ), where the x; are integer or half-integer
numbers bounded by the system inequalities (5) and M is
given by (6):

fori=1,2,.,k, (5)

>
k
M:in. (6)

The second one contains points ¥ = (y,,...,J, ), Where co-
ordinates y; are integer of half-integer numbers satisfying
relations

Ap+l +¥p_1 >yp>l"41-v+ 1 — Vo1 ls forp=12,.,k,
(7a,b,c)
Y12V 2 — Vi1 - (7d)
Here y, = A4, and y, =M. _
The dimensions for the sets A* and A* are the same. The
above result follows from the relation
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D [A*(4,,45,...,4,;M) ]
=Y D[A* (4, 4y...di_ ;M —m)]

XD [Al(Ak)m)] 1 (8)

where we denote by D[R] the dimension of the set R. The
proof of (8) is rather easy by induction for k.

It is obvious from (3b)—(3d) and (10) that the repre-
sentation of the algebra sp(2k — 2) X4 %: (Q¥-1, Qk—1, .,
Qi 71) Xhy enters D[A* (4,,4,,...,4, ;) b, ) ] times into the
representation (2%, Q%,...,Q%), where

A, =1 (B, —C;), fori=1,.k, (9a)
B, =Q%, (9b)
Cl =0’ (9C)
B, = Min(Q% , , 7P,Q§:‘p), forp=1,..k—1,
(9d)
C,=Max(Q5 , Q7 _,), forp=23,.k,
(9e)
x,=~Tf,1_,+1(B,+C,). (10)

Now if we assume a simple relation between the missing
label numbers occuring in the pattern (4a) and coordinates

Yas

1 a+ 1

vo= {Bl + 3 (B, +C, —21‘@‘”1)} , (1)
p=2

for a = 1,2,....,k — 1, we immediately obtain from (7a,b,c)

the system of inequalities (4c)—(4e) and because g, is equal

to 2y, _, wealso get (4f) from (7d), which is what we want-

ed to show.
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A criterion to enlarge infinite-dimensional Lie algebras to analytic Lie groups is used here for
the extension of graded Lie algebras of physical interest to super-Lie groups.

I. INTRODUCTION

Supersymmetry' required new and rich geometrical
structures able to treat commuting and anticommuting
fields of supersymmetric field theories on the same ground.
These structures were built with the usual techniques of dif-
ferential geometry starting from a graded space called a su-
perspace.

In particular, super-Lie groups® were defined for the
exponentiation of graded Lie algebras (GLA’s), which are
the algebras of infinitesimal transformations in supersym-
metric theories.

The study of the extension of graded Lie algebras to
globally defined graded Lie groups appeared definitively in-
teresting as a basic ingredient for the investigation of topo-
logical properties of superspace field theories.

This extension, which generalized to super-Lie groups
the classical Lie third theorem,? was first proved by Rogers”
for the case when the mathematical representation of super-
space was a finite-dimensional Banach space. The same re-
sult was given by Bruzzo-Cianci in the case of infinite-di-
mensional superspace with a countable basis. These results
show that any graded Lie algebra extends to a super-Lie
group provided that the super-Lie group is modeled on a
Banach space with a countable basis. Nevertheless, the case
of a noncountable basis, hence nonseparable Banach spaces,
is interesting from the mathematical and from the physical
point of view, because it is still unknown what topological
properties should have the mathematical representation of
the superspace in order to give a precise formalization of
supersymmetric theories.

In the Appendix, a space is shown that could be a good
model of superspace and it is an example of an infinite-di-
mensional Grassman algebra which is a nonseparable Ban-
ach space.

So it is interesting to look for conditions that ensure the
extension of graded Lie algebras to super-Lie groups mod-
eled on general (i.e., also nonseparable) Banach spaces. This
leads to the theory of infinite-dimensional (normed) Lie al-
gebras where algebras exist that are not enlargeable to a
group (in the sense of the Lie third theorem). Therefore
conditions on such Lie algebras are needed; namely we use a
theorem of Swierczkowsky* on solvable normed Lie algebras
to prove the following proposition (see Proposition 5.1).

Proposition: Let A be a graded Lie algebra whose com-
mutative sector (which is a Lie algebra) is solvable, then 4 is
enlargeable to a super-Lie group for any (representation of)
superspace.

Then, generalizing the result to any superspace, we paid
the price of reducing ourselves to the set of solvable Lie alge-
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bras. But this is not a too great restriction: as we shall see,
this set is big enough to allow the extension of a wide class of
graded Lie algebras of physical interest (namely the super-
symmetry and the superconformal algebras). Moreover,
apart from the topological structure of superspace, our
theorem works also in the context of real graded Lie algebras
with an infinite number of generators.

This paper is organized as follows. In Sec. II, after the
definition of normed Lie algebras and their local groups, we
describe a sufficient condition to solve the problem of the
extension of a normed Lie algebra to a Lie group. Sections
III and IV are devoted to properly defining the same prob-
lem for graded Lie algebras and super-Lie groups. Section V
contains our main result: we give a sufficient condition for
the extension of graded Lie algebras. From the demonstra-
tion, an alternative definition of super-Lie groups arises,
more suitable in the infinite-dimensional case. In Sec. VI we
apply our condition for the graded Lie algebras of physical
interest.

Il. LIE GROUPS AND NORMED LIE ALGEBRAS

In order to describe the relation between Lie groups and
Lie algebras, we consider the Lie group GL(#,R) of linear
invertible transformations on R” as an example. A map,
called an exponential map, is defined on the (Lie) algebra of
the n X n real matrix .#">"(R) into GL(#n,R) by the series
exp(4) = 22_,(A4*/k!), where A = I is the identity ma-
trix and each matrix element converges absolutely.

Since exp(0) = I, from the inverse function theorem it
follows that any matrix in some neighborhood U of the iden-
tity in GL (n,R) can be expressed as exp(4) for some 4 of an
open neighborhood B of the origin of .#"*"(R). The algebra
A"*"(R) is isomorphic to the tangent space at the identity
of GL(n,R), and it is called the Lie algebra of the Lie group
GL (n,R). The group structure of UC GL(n,R) is uniquely
determinated by the Lie algebra through the “morphism”
exp,

exp(x) -exp( y) = exp(x*y), (2.1)

where the product on the lhs of the formula (2.1) is the
product of the Lie group and the product on the rhs is the
Campbell-Hausdorff product on the Lie algebra,’

1 o
xxw=x+y+—[xp]+ Y P,(xp) (2.2)

2 ey
with P, (x, y) the homogeneous Lie polynomial of degree ».
Then the local structure of a Lie group, the structurein a
sufficiently small neighborhood, is completely determinated
by its infinitesimal group, that is, by its Lie algebra. This is of
great importance in applications for when properties of local
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nature are being studied, and one needs only to consider the
Lie algebra.

But it is also important to make sure that the study of
infinitesimal transformations (i.e., of the action of the Lie
algebra) is sufficient in describing the finite action of the
(Lie) group. This is related to the question (problem of ex-
tension of a Lie algebra): given a Lie algebra L, does there
exist a Lie group G that admits L as its Lie algebra?

The answer is always yes for finite-dimensional Lie alge-
bras.® But in the infinite-dimensional case the answer can be
no, and then the problem of extension is not trivial in that
case.

In order to give sufficient conditions for the extension of
an infinite-dimensional Lie algebra to a Lie group, one needs
a more rigid structure called a normed-Lie algebra.®

Definition 2.1: A normed-Lie algebra L is a Lie algebra
which is also a normed space with a norm || || such that, for
each x, yelL,

Itx p1I<M ] 1l M >0, (2.3)

Example 2.1: If A is a Banach space, the Lie algebra A4,
given by the operation

[a,b] =ab — ba, a,bed, is a normed-Lie algebra.

Definition 2.1 tells us that the Lie product is continuous
with respect to the topology induced by the norm;one could
ask if the infinite series of the Campbell-Hausdorff formula
(2.2) is convergent in this topology. Actually,” the Camp-
bell-Hausdorff formula is absolutely convergent in the ball
of L ||x|| <p =1log 2 and there exists a positive number ¢
such that if ||x||, ||y|| <¢, then ||x*y|| <p. The number ¢ en-
ables us to give an example of the local group of L (Ref. 6).

Definition 2.2: An open set B of a normed-Lie algebra L
is a local group of L if and only if (i) the operation *:
B X B—L is continuous and well defined by the Campbell-
Hausdorff formula, (ii) for each x,y,z of B we have
x*(p*z) = (x*y)*z, and (iii) if x and #nx belong to B(neN)
then x" = x*---*x = nx.

Example 2.2: The open ball B= {xeL such that
llx|| < ¢} is a local group of L. Now we give a definition of a
Lie group due to Hoffmann,” which is more suitable than the
ordinary one in dealing with infinite-dimensional objects. In
Proposition 2.2 we show that his definition is equivalent to
the ordinary one.

Definition 2.3: A Lie group G'is a topological group such
that there exists a normed-Lie algebra L and a function exp:
L — G with the following properties: (i) L hasalocal group B
and G has an open set Usuch that (s.t.) exp B = Uand exp:
B-U is a homeomorphism with exp(x*y) = exp(x)
-exp( y), and (i1) if xeL and rseR then exp(r + s)x
= exp(rx)-exp(sx).

The normed-Lie algebra L is the Lie algebra of the Lie
group G and we write L = Lie G. The copy (B,U) is called
the linearization of G.

Definition 2.4: A normed-Lie algebra L is enlargeable if
there exists a Lie group G such that Lie G = L.

The extension problem is now to look for enlargeable
normed-Lie algebras. Since there exist nonenlargeable
normed-Lie algebras,® we are interested in sufficient condi-
tions to have enlargeable normed-Lie algebras.
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Example 2.3: The normed Lie algebras A4 of example
2.1 are global with Lie group G = {invertible elements of 4}.
We recall that a Lie algebra L is solvable if the chain of ideals
of L,

L'=[LL],
L**'=[L"L"] is such that there exists meN s.t.
Ln=Lm+*1=L>={0}. (2.4)

In Ref. 4 Swierczkowski proved the following proposition.

Proposition 2.1: Any solvable normed-Lie algebra is en-
largeable.

In the next section it will be shown that a class of
normed-Lie algebras of great interest in supersymmetric the-
ories is solvable, so it is enlargeable.

We end this section by proving’ that Definition 2.3 of
the Lie group is equivalent (in any dimension) to the classic
one.

Proposition 2.2: The Lie group of Definition 2.3 is an
analytic manifold with an analytic group operation.

Proof: Consider two linearizations (B,U),(C,U) of the
Lie group G's.t. C *CC B (this is always possible, see Refs. 7
and 9). Charts on G are given by (U,, f, ), where geG and
the maps f,: U, -~CCLie(G) are defined by f,(p)

=log g~ 'p (log = exp ™). If the intersection between two
charts is not empty, U, NU, #®, one has g~ 'h€U, then
t =log g~ 'h belongs to C.

Compute the transition functions f, =/f,°f:

So(UgNU,) = fo (U, NU,): Jen(x) = fo (hexpx)
=logg '(hexpx) =log(g™ 'hexpx) and by Definition
23 (1) fou(x) =loglexp(logg™'h*x))=logg 'h*x
= *X.

Therefore the transition functions are bijective maps
given by an absolutely convergent series of terms multilinear
and continuous on x, that is they are analytic. Since the left
and right translations are clearly isomorphisms of the ana-
lytic structure, and the group operations are analytic in a
neighborhood of the identity, it follows that multiplication
and inversion are analytic.

lil. GRADED-LIE ALGEBRAS

In looking for a solution of the problem of extension of a
Lie algebra in the supersymmetric case, we have to note that
in supersymmetric theories the algebra of infinitesimal
transformations is not a Lie algebra, but a graded-Lie alge-
bra (GLA).

Definition 3.1: A real graded algebra’® 4 is a real vector
space such that'' (i) 4 is the direct sum of two subspaces,
A=A,®A,; (ii) A is an algebra such that 4,4, CA, _,,
k,h = 0,1 (the sum is mod 2); and (iii) for each homogen-
eous a,bed it is ab = ( — 1)!°!1®! pa, where the degree of a
homogeneous element aed, is |a| = k (k= 0,1).

Example 3.1: The Grassmann algebra over R, B, , is a
real graded algebra. If we write the elements of B, as
&= 2#@L a.e, (where M, is a suitable set of indices and e,
is a basis of B, ), a norm can be defined on B, such that it
becomes a Banach algebra: [|£ || = 2, |a,| (see Ref. 12).
The generalization to infinite-dimensional Banach algebras
of “Grassman-type” (that is, graded algebras), is given by
the definition of a Banach~Grassmann algebra. '
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Definition 3.2: A real graded Banach algebra Q is a Ban-
ach—-Grassmann algebra if (i) (self-duality) for each contin-
uous Q, linear map f: Q, - Q. (h,k=0,1), there exists a
unique element wueQ@, ., such that |u||=|f] and
S(a) = ua for all acQ,,: (ii) the commutative sector of Q,
QnisQo=RoQ{, with ||[A + 5| = |4 |+ ||s|| for AR and
seQ {, where Q@ denotes the Banach subalgebra of Q genera-
ted by even powers of elements of the anticommutative sec-
tor of Q, Q,.

An example of a Banach—Grassmann algebra will be
given in the Appendix. Now we recall the definition of grad-
ed Lie algebra.'®

Definition 3.3: A real graded algebra 4 whose product is
denoted by an angular bracket (-,-) is a real graded Lie
algebra (GLA) if, for each a,b,ced, then
(— DKa,{b,e)) + (— DK {a,b )

+ (= DNl (c,a)) = 0. (3.1)
Actually, we are interested in GLA’s of a particular shape; as
we shall see in the next section, the linearized structures re-
lated to a super-Lie group are graded Lie algebras of the
formQ® g &, where & is a generic real GLA, and with Q we
denote the graded algebra of Example 3.1 or Definition 3.2.
In order to give Q® ¥ a graded Lie algebra structure, we
need two definitions.'®

Definition 3.4: Given two graded algebras 4, B, the
graded tensor product 4 ® B is a graded algebra through the
product

(avb)-(@®b’y=(—1)"laa’ o bb". (3.2)
With respect to the product (3.2) the commutative and
the anticommutative sectors of A ® B are
(A®B)y=Ay®ByoA,® B,
(A®B),=A,@B,94,9B,.
Definition 3.5: Given areal algebrad = A, ® A4,, a grad-
ed Lie algebra is defined by the product
X,)Y)=XY— (- 1)*Pyx. (34)
The product (3.4) is compatible with the grading, so 4,
is a Lie algebra. Applying Definitions 3.4 and 3.3 to the real
graded algebras Q and ¥, we define Q@ ¥ as a graded Lie

algebra. The commutative sector (Q® ¥)o=0,® Y,
+ Q,® ¥, is a Lie algebra with Lie product

[(a®g),(boh)] =ab® (gh) — bao (hg)
=2abe {gh).

(3.3)

(3.5)

If the algebra Q is infinite dimensional with respect to the
reals (as in Definition 3.2) then (@® %), is an infinite-
dimensional (real) Lie algebra.

We ask if the infinite-dimensional Lie algebra (Q® %),
is enlargeable in the sense of Definition 2.4. To use the suffi-
cient condition of Proposition 2.1, we give (@ ® %), astruc-
ture of normed algebra.

Proposition 3.1: It is possible to giveanormto (@ ® ¥ ),
such that it is a normed-Lie algebra.

Proof: The norm is defined as follows'*: let {D , } be the
Q-module basis of Q @ ¢ and let C %, be the structure con-
stants with respect to such a base. If X = X D, is an element
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of Q8 ¥, weset | X|| = =, |X,|, where || is the norm de-
fined on Q. Then

LY =3 | Y?XAC L lI<M|IX| || Y].
E

The normed algebra Qo & is complete because @V
=@ X- - XQ is complete (N = real dimension of ¥).

N times

Then from Propositions 2.1 and 3.1 the following is true.

Proposition 3.2: Let Q be the graded Banach algebra of
Example 3.1 or Definition 3.2, and let & be any real graded
Lie algebra, if the Lie algebra (@ ® ¥ ), is solvable, there
exists a Lie group G such that Lie G = (Q® ¥ ),.

In Sec. V we will prove that if such a G exists, then G isin
fact a super Lie group and Q@ ® ¥ is its related graded Lie
algebra. Before doing that, we shall give the definitions of
these objects.

V. SUPERDIFFERENTIAL CALCULUS AND SUPER-LIE
GROUPS

This section contains a brief account of superdifferential
calculus needed in the following. For a complete description
of this subject we rely on the original works'*'? and Refs.
15-17.

Roughly speaking, superdifferential calculus is a Fré-
chet differential calculus on the Banach algebra Q (see Ex-
ample 3.1, Q = B, , and Definition 3.2), which takes suit-
able account of the graded structure of the algebra Q.

To be a bit more concrete, recall'® that on a real Banach
space H, which is an R module, the Fréchet differential f’ of
a differentiable function on H is an R-linear operator such
that f(p + k) =f(p) +f'(p) -k + o(]|h ||) where the prod-
uct () is the product on R.

Because one can regard Q as a module on its commuta-
tive sector @, the Fréchet differential will be defined as a Q,-
linear operator. If Q is a Banach~Grassmann algebra (see
Definition 3.2), we have that the space of Q,-linear functions
defined on Q into Q, .¥°, (Q,Q) is isomorphic to Q (self-
duality ). Therefore one has, for ¢ defined on Q into Q,

e +9) =@p@) +¢'(p)-g+o(ql), (4.1

where the product and the norm are those on Q.

A superdifferentiable function is an infinite-time differ-
entiable function with Qg-linear differential operator the
Fréchet differential operator. Note that the Q,-linearity im-
plies R linearity, so a superdifferential function is alsoa C* -
differential function (regarding Q as real Banach space).

If Q is finite dimensional (@ = B, of Example 3.1),
Z 0, (@,Q) does not exhaust @ and formula (4.1) must be
explicitly required. The superdifferential structure defined
on Q obviously extends to the @, module Q™"

= (Qo) "X (@™

In the definition of (m,n) super-Lie groups, one needs
the definition of a superanalytic function on Q™" and of
superanalytic supermanifolds.'*"?

Definition 4.2: Let f: U—Q be a function defined on an
open set U of Q ™. The function f is superanalytic on U if,

Paolo Teofilatto 993



for each p on U, it can be written as an absolutely convergent
power series of the form

0

f(p)=k D

ok

km+n

Kipkao o
ak,'“km*,rpllp2k Pmin

€Q. (4.2)

with @, ..
It is easy to see that a function which is analytic, with respect
to the underlying real Banach structure of Q" and with the
Qo linear first Fréchet differential, is superanalytic.

Definition 4.3: An (m,n) superanalytic supermanifold
M is a topological manifold endowed with an atlas
o ={(Uy,, @a); @o: U, Q™" }, whose transition func-
tions are superanalytic functions.

A superversion of the concept of fiber bundle was also
given.'®?¢

A standard example is the tangent bundle of a super-
manifold M. This is the bundle obtained by gluing together
the tangent spaces at each point p of M, T, M. It is important
to note that points of the tangent space 7,M have to be
considered equivalent classes of paths on M and not deriva-
tions. In fact, the space of derivations on p, TPM, is broader
than the space of tangent vectors, because, in the graded
case, the derivations are “‘Leibnitz-type” operators on germs
of functions valued not only in the set of the “scalars” Q,
(Ref. 21), but also in the broader Q. Actually functions into
the scalar are not the only interesting functions; coordinate
functions themselves are not always Q, valued and it is im-
portant to define the derivations on those functions.

Therefore in the graded case, one has two different
spaces'>'%: the space of derivations on p, T M, which is a free
Q module on the basis {3 /dx,...,d /dx™ ,3 /38 *,...,0 /39" }
and the space of tangent vectors on p generated by a “graded
linear span” of the previous basis, that is,

3 3 9 d
TM=Qel-2 . -2 2 .21
p o [Hx’ 8x'"]+Ql[<9191 819"]

Vector fields and derivative fields are superdifferentiable
sections of the superfiber bundles TM and TM (the latter is
modeled on Q™ * " ). The definition of the super-Lie group”
is an obvious extension of the Lie group one.

Definition 4.4: A topological group G is a super-Lie
group iff G is an (m,n) superanalytic supermanifold with
superanalytic group operations.

The space of left-invariant derivative fields of G is a
graded Lie algebra isomorphic to 7, G, where e is the identity
of G; this is called the graded Lie algebra of G (graded Lie
module in Ref. 2). The space of left-invariant vector fields of
G is isomorphic to T, G and it is the Lie algebra of G.

In this context, the superanalog of the extension prob-
lem reads “given a graded Lie algebra I' = Q® ¥, does
there exist a super-Lie group G that admits I as its graded
Lie algebra?” A way to answer this is to consider the com-
mutative sector of @ ® ¥, the Lie algebra (Q® ¥ ),, and to
try to extend it to a super-Lie group to show that T, G=T".
Following this procedure and using the classical Ado
theorem, Rogers? proved that Q® ¥, with Q = B, and ¥
any real GLA, extends to a super-Lie group; that is obvious-
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ly generalizing Definition 2.4 to the super case, where any
finite-dimensional graded Lie algebra is enlargeable.

For Q = Banach—~Grassmann algebra (Definition 3.2),
Bruzzo-Cianci,"* using the universal enveloping algebras,
proved that if Q has a countable basis then any graded Lie
algebra Q ® ¥ is enlargeable.

The case of noncountable basis, hence nonseparable
Banach-Grassmann Q, must also be considered. Moreover,
the example in the Appendix shows that there is some merit
in doing that.

In the next section, we use the theorem of Swiercz-
kowski* (Proposition 2.1) to show that the graded Lie alge-
bra Q ® ¥ is enlargeable if the Lie algebra (Q ® ¥ ), is solv-
able, for a generic Banach—-Grassmann algebra Q.

V. ENLARGEABLE GRADED LIE ALGEBRAS

From Propositions 3.1 and 2.1 we have that if a graded
Lie algebra 0® ¥ is such that its commutative sector
(Q® 9 ), is solvable, then there exists an analytic Lie group
GsuchthatLie G = (@® % ),. Now we prove that G is actu-
ally a super-Lie group.

Proposition 5.1: Given a graded Lie algebra 0® ¥
whose Lie algebra (Q ® & ), is solvable, there exists a super-
Lie group G that admits (Q® ¥ ), as its Lie algebra and
(Q® %) asits graded algebra.

Proof: For the choice of the norm on L = (@® ¥ ),,
there exists a homeomorphism ¢: L— Q™" defined by
¢(x,D* +3,D%) = (x,,9,),where D*(4 = 1,..m + n)
is the Q@-module basis of L, a=1,.,m=dimgz¥,,
a=1l,..,n=dmy ¥,

Recall the analytic atlas of the group G, given by Propo-
sition 2.1, s.t. Lie G=L, & ={(U,,f,),f,: Uy—~L}yq;
this induces an atlas modeled on Q™", .& = {(U,,@, ).@,"
U, »Q"™"} e With @, (p) = @of, (p) = @(logg~'p). The
transition functions are @, =@, %9, " @, (U, U,)
-@, (U, U,) then

@Pen(P) =@ (hexpp "' (p)) =g loglg 'hexp e ~'(p))
=g@(log exp(logg~'h+@ ~'(p))) =@(t*@ ~'(p)).

That is the transition functions are superanalytic by the very
definition of the Campbell-Hausdorff product on L. For the
same reason the group operations are superanalytic in a
neighborhood of the identity. Since the translations are iso-
morphisms of the superanalytic structure, it follows that the
group operations are superanalytic, therefore G is a super-
Lie group.

By construction (@® ¥ ), is the tangent space at the
identity of G, that is,

(Q®9)y=T.G = Qo[—a— ) i’—]

ax, " ox,

d d
vl o)

The Lie module of G is the free Q module generated by the
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basis of the Lie algebra of G: Q{3 /9x,,...,0 /33, }, that is,
Q® ¥. This completes the proof.

We call an enlargeable graded Lie algebra Qo ¥ s.t.
there exists a super-Lie group with the properties of Proposi-
tion 5.1. Then we have proved the following: any GLA
Qe % with (Q® ¥ ), solvable is enlargeable.

VI. EXAMPLES: THE SUPERSYMMETRIC AND
SUPERCONFORMAL ALGEBRAS

Now we want to apply the condition of Proposition 5.1
in the context of graded Lie algebras of physical interest.
Actually, only some graded Lie algebras are of physical in-
terest. In relativistic quantum field theory there exist several
restrictions in defining a group of symmetry. These restric-
tions were proved by Coleman—Mandula®? in a series of “no-
go” theorems within the framework of Lie algebras.

The introduction of fermionic generators of (super)
symmetry circumvented these no-go theorems. In fact, su-
persymmetry requires bosonic (commutative) and fer-
mionic (anticommutative) generators to define a graded Lie
algebra of infinitesimal transformations. Nevertheless, the
Coleman—Mandula results still provide strong limitations
for bosonic and fermionic generators as well. Haag—Lopus-
zansky-Sohnius®® proved that the most general real graded
Lie algebra in supersymmetric field theory is 4 = 4,8 A4,,
where A, is given by the generators of the Poincaré transla-
tions P, and the generators B, of a compact Lie algebra %
of the internal symmetry group, 4 is given by ¥ spin-i gen-
erators Q X, 0% (here the Weyl representation of spinors is
used), a = 1,2,3,4. The commutation—anticommutation
rules are’ |

W (x,9);( y,€))
=g@(x)o(@g 'Xo ~Nx$);(y.€)

[P,.P,]=[P.Q5]=[P..B.] =0,
[B,,B,] =4d},B,,

{Qk.01} = —28"y,P,,

{00 ={0k.04}

0,
_< € X kM

where the generators X** belong to an Abelian subalgebra
of the algebra Z and they commute with any other gener-
ator.

Applying our condition to the GLA Q® &, where Z is
given by (6.1), we obtain the following.

Lemma 5.1: If the algebra & of the internal group is
solvable, then the GLA O ® G is enlargeable.

Proof- Working out L'=[(Q® %),(08F),],
L?*=[L"'L"]etc., bytherules (6.1) one has for sufficiently
high n, L" =Q,X %', where #'*'=[%A #‘] and
B'=[RB,%). Then (@& Z) is solvable if the algebra
% = (B,) is solvable.

In the following interesting cases & is actually solvable
and one can apply Proposition 5.1.

(1) If in the algebra (6.1) itis N = 1 then?* Z = alge-
bra of U(1). This is the case of simple (N = 1) supersym-
metry with chiral U(1); the group G is a (4,4) super-Lie
group. For global supersymmetry, the superanalytic super-
manifold is trivial, then G = (@ **,¢) with group operation
¥ defined by the Campbell-Hausdorff formula that breaks
itself to the second order: L, = [L,L '] = 0. Then for X, Y in
the algebra X *Y =X + Y + }[X,Y] and by rules (6.1), we
have

(6.1)

without central charges,
with central charges,

— @ #{(x, P+ 9,07 (9, P+ €,0%) =@((x, +y)P*+ (9, + €)Q" + }[x, P+ 9,0%p,P" + €0 ])
= (X, +V,OPF+ (T, +€,)0° +1[0.0%€6,0° ) = ((x, + 3P + (F. + €107+ I,6,{0°0"})
=¢)((X# +Vu +19a7/,u6ﬂ)P#+ (F, +€,)0%= (§+Z+lz7_/§’1_9+.6_)

(2) If % =0 the algebra (6.1) is the supersymmetry
algebra of N extended pure supersymmetry. The group Gis a
(4,4N) super-Lie group.

(3) In addition to the various super-Poincaré algebras
there are both simple and extended superversions of the con-
formal algebra:

conformal algebra + 2N spinoral algebra

Lorentz rotation

(for the commutation—-anticommutation rules see Ref. 24).
The superconformal algebra is obviously enlargeable and ex-
tends to a (10,2¥) super-Lie group.
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APPENDIX: FROM SPACE TO SUPERSPACE

Originally superspaces were locally defined through
four real and N anticommuting coordinates that are spinors,
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Vo . .
that is points of a vector space Vin which the group SL(2,C)

is represented.

The most immediate idea that occurs to obtain anticom-
muting spinor coordinates is to consider the spinors JeV as
elements of degree 1 of the Grassmann algebra on V,A (V).
Then the product A(V )X XA(V)yX - A(V), could
locally represent the superspace [here A(V), is the set of
commutative elements and A (¥}, is the set of anticommuta-
tive elements of the Grassmann algebra A(V)]. But two
problems arise: (1) superspace would depend on a particular
choice of spinor spaces, and (2) as the spinor spaces are of
real dimension 4, the superspace would be finite dimensional
(d — 23(4+N) )

Because of problem (2), undesirable restrictions follow.
The Green’s functions of fields valued on the algebra (V)
will vanish if one takes a sufficiently high number of fer-
mionic fields.?® Then an infinite-dimensional Grassmann al-
gebra is preferred. Here an infinite-dimensional Grassmann
algebra whose elements are spinors is constructed. This alge-
bra result is a Banach—Grassmann algebra (see Definition
3.2) without a countable basis.

Paolo Teofilatto 995



Given a general space-time, one can associate to each
orthonormal frame g a spinor space V,, provided that the
space-time admits a spin structure.”> Changing the ortho-
normal frame g, one obtains many equivalent spinor spaces.
Two orthonormal frames @,b lead to the same spinor space if
and only if it results in @ = b-7(y), where 7 is the double
covering map 7: SL(2,C) -S0(3,1) [or SO(4)] and y be-
longs to a subgroup of SL(2,C) ¥ called the Crumeyrolle
group.?® Then if 7 is the quotient SO(3,1)/7(¥ ), the ine-
quivalent spaces of spinors are parametrized by*’ %
hed? -V, . Now let V be the direct integral of all inequiva-
lent spinor spaces ¥V = & .4 V), where the direct integral is
the vector space of elements (Z,_,- X, ) in which the family
(X, ) nes belongs to the Cartesian product I, V,, x, be-
longs to V,, for each 4, and x,, = O almost everywhere. Note
that the set of indices 57 is not countable (in fact #”is local-
ly isomorphic to R *).

We give to the space ¥ a ! '-norm defined by

el = > xa S b)) | = 3 [r(W)],

hex” hes?” he¥”

here b(4) is the basis of ¥, and r(%) are the coefficients of
x,€V, . The sum is finite, because x, vanishes almost every-
where. SI(2,C) is still represented on the space
V= @&, V, by the direct integral of the representations
Ppr:SL(2,C) -V, . The Grassmann algebra on V" (Ref. 28),
Q = A(V), is a free module on the infinite-dimensional base
{6(h),b(h) Nb(K),... T hpes

It is easy to see that Q with the previous / '-norm, is a
graded Banach algebra such that the property (ii) of Defini-
tion 3.2 holds. In order to prove the self-duality of Q [ prop-
erty (i) ] of Definition (3.2), we note the following.

(D HOITI(A( D pe Vh ),A(V))
=H0m(@hgy;/‘ A(Vh)’A(V))
= @ o Hom(A(V,),A(¥)) (Ref. 28).

(2) If XeA (W), Iis a finite subset of 57, and Xb; = 0 for
each iel, there exists a veA(V) such that X =vb, (b,
=b;b; by ,i,j,k) and || X || = |v]|.
Following Ref. 29 one can see that the space of continuous
@, linear maps f: Q, —Q, (r,s =0,1) is isomorphic to Q.

To see the above, it is enough to prove that if f
A(V,);—Qisa A(V, )linear and continuous map, e, - -en
is the basis of A(V, ) and f; = f(e;), then there (eZ))(ists qeQ
such that f; = ge;, i = (1,...,N). Infact fie, = 0= thereis
¢.:€Q s.t. fi=gqe,. Now, f.e,= —fie,=gqee, then
(fa—qie)e; = (f; —g183)e, =0 s0 it exists veA(V) #Q
s.t. fo— qie;, = ve,e,.
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Let ¢, be g,=g,+ve,, then [f,=g,e, If
qg=¢,7#q9,+ " +qn,onehas f; =gqe;, i = 1,...,N. There-
fore Q = A(V¥) is self-dual, and is a Banach—Grassmann al-
gebra without a countable basis.
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It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27,
1506 (1986) ] that the Euler-Painlevé equation yy” + ay’> + f(x)yy +gx)y* +by' +¢=0
represents the generalized Burgers equations (GBE’s) in the same manner as Painlevé
equations do the KdV type. The GBE was treated with a damping term in some detail. In this
paper another GBE u, + u”u, + Ju/2t = (6/2)u,, (the nonplanar Burgers equation) is
considered. It is found that its self-similar form is again governed by the Euler-Painlevé
equation. The ranges of the parameter « for which solutions of the connection problem to the
self-similar equation exist are obtained numerically and confirmed via some integral relations
derived from the ODE’s. Special exact analytic solutions for the nonplanar Burgers equation
are also obtained. These generalize the well-known single hump solutions for the Burgers
equation to other geometries J = 1,2; the nonlinear convection term, however, is not quadratic
in these cases. This study fortifies the conjecture regarding the importance of the Euler—

Painlevé equation with respect to GBE’s.

. INTRODUCTION

One of the best-known model equations in mathemat-
ical physics is the Burgers equation

u, +uu, = (6/2)u,,. (1.1)

This equation describes the conflict between cumulative
nonlinear distortion due to convection and the competing
linear diffusive processes that this distortion evokes. Equa-
tion (1.1) is essentially a mathematical model, and was writ-
ten out in an intuitive manner (see Benton and Platzman!
for the history and review of this equation and its solutions;
see also a forthcoming book by Sachdev?). Equation (1.1)
has a beautiful structure and has the distinctive feature that
it can be exactly linearized to the heat equation by the cele-
brated Hopf—Cole transformation. Otherwise, its utility as a
descriptor of physical phenomenon is rather limited. The
model equations, which have been derived from the Navier—
Stokes equations by suitable perturbation methods, are in-
variably more complicated than (1.1). An excellent review
of these model equations in nonlinear acoustics has been giv-
enby Crighton.? Here we cite a few of these model equations.
We may mention that the large number of these equations is
due to the simple isotropic nondispersive scalar nature of the
acoustic wave field subjected to nonlinear effects. The non-
planar Burgers equation

u, +uu, +Ju/2t = (8/2)u,,, (1.2)

J = 1,2, for cylindrical and spherical symmetry, was derived
by Leibovich and Seebass® from the Navier-Stokes equa-
tions, using the method of multiple scales. It describes the ¥
waves from a sonic boom or an explosion. The equation

(1.3)

where U is a constant, was treated by Murray® as a simple
turbulence model. Lardner and Arya® discussed two gener-
alized Burgers equations:

u, —uu, +Au=(6/2)u,,,
u, — [ pu +vi> + vC(6)lu, = (6/2)u,,.

u, +2uu, — Uu=du

xx?

(1.4)
(1.5)
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Equation (1.4) describes the plane motion of a continuous
medium for which the constitutive relation for the stress
contains a large linear term proportional to the strain, a
small term quadratic in the strain, a small dissipative term
proportional to the strain rate, and a small viscous damping
term proportional to the velocity. Equation (1.5) describes
the motion of a continuous medium when the stress—strain
relation contains a term cubic in the strain in addition to the
terms described above.
A rather more complicated model is
1 y+1,, 6 BQ

u, +—u, — U, +

= —— Uy R (1.6)
w2 T2 T g,

which was suggested by Karabutov and Rudenko.” Here
u(x,t) is the velocity of a thermoviscous gas in one-dimen-
sional flow, Q(x,?) is the rate of heat addition prescribed by
some external agency, 3 is the coefficient of thermal expan-
sion, and ¢, is the constant-pressure specific heat.

One might take a different viewpoint about these equa-
tions. To quote Crighton,’ we may consider them “simply as
model equations, having a certain nominal accuracy, but be-
ing regarded effectively as the exact equations governing
weakly nonlinear wave propagation in various media and
geometrical circumstances. That is the point of view taken
here; the structure of the different model equations is of fun-
damental (and some practical) interest, as are the solutions
of initial and boundary value problems for the model equa-
tions for shock waves, N waves, and harmonic waves.”

In a previous paper,® hereafter to be referred to as Paper
I, we had proposed that there is a class of nonlinear ordinary
differential equations (ODE’s)

w+ay?+ fx)py +gx)y +by' +¢c=0, (17)

which characterize generalized Burgers equations (GBE'’s)
in the same manner as the Painlevé equation does the KdV-
type equations. Equation (1.7) extends the class of nonlin-
ear ODE’s studied by Euler and Painlevé (see Kamke®) for
which & = ¢ = 0and a is a constant, and so we referred to the
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solutions of (1.7) as Euler—Painlevé transcendents. In parti-

cular, we studied the damped Burgers equation
u, + uPu, + Au* = (8/2)u,,, (1.8)

where A > 0or A <0, and a and 3 are real constants. The self-
similar solutions of (1.8),

u=1t"4- f(y), p=x(28)""3 (1.9)
are governed by the nonlinear ODE
Sr+2f =4/ —a)1f

—4(28) "V fla=D2fr 4] fa =, (1.10)

provided B = (a-1)/2. Equation (1.10) can be trans-
formed into

HH" —2(1 +a)H"* +29HH’

—2H? -23H’' _21,=0 (1.11)

Via
E{ 1/2 1—a)/2
- 6 / f( ’

wherea, =1(3 —a)/(a—1)and A, = A6(1 — a).

Equation (1.11) is a special case of (1.7). We studied a
connection problem for (1.10) which has appropriate (lin-
ear) asymptotic behavior at = + © and 7= — .
Equation (1.11) was also studied in great detail, particularly
through its series solution. Apart from the solutions that
vanishatn = + o, we discovered solutions, in some ranges
of the amplitude parameter, which either go to (nonzero)
constant value [the exact singular solutions of (1.10)] at

— oo Or grow to become unbounded there. We also studied

numerically the transition of several initial conditions for
(1.8) to the self-similar form governed by (1.10) with van-
ishing asymptotic conditions at 7 = + .

We continue our study of generalized Burgers equations
to support our claim regarding the role of the class of Euler—
Painlevé equations (1.7). We study the nonplanar Burgers
equation

u, +uu, +Ju/2t = (6/2)u,, , (1.12)

wherein we allow the nonlinearity to be general and charac-
terized by the parameter @, the Burgers equations corre-
sponding to @ = 1. Our study of (1.12) turns out to be very
rewarding. In the present case we again seek self-similar so-
lutions of (1.12) intheformu =¢* f (9),a = — 1/2a. Fol-
lowing the same steps as for (1.8) we obtain equations simi-
lar to (1.10) and (1.11) (see Sec. II). We study the
connection problem for the corresponding equation in f.
Equation (1.12) permits considerable analysis. We summa-
rize some of the results. Unlike for (1.8), we are able to get
explicit one parameter family of solutions in terms of expo-
nential and error functions for spherically and cylindrically
symmetric equations, namely,

(1.13)
(1.14)

u, +u'u, +u/2t=(8/2)u,,, J=1,

u, +uPu, +u/t=(8/u,, J=2.

These solutions correspond exactly to the single hump
solutions of the Burgers equation. Again the requirement
that the single hump solutions of (1.8) vanishing at

7 = =+ oo exist leads to the conditions that ¢ =} for J = 1
and } <@ <} for J = 2. These conditions correspond to the
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condition a >} for J = 0. It is interesting that there is just
one value of @ = | for J = 1 for which such solutions exist;
this is the value for which an exact explicit solution exists.
ForJ = 0and 2, we have, respectively, an infinite and a finite
interval of a, for which the single hump solutions exist. We
also have nonzero (singular) constant solutions for o/ = 1,
J #0, to which the solutions starting with appropriate
asymptotic conditions at 7 = oo tend as 7 — — oo. This hap-
pens for a; =1, J=1, and for a, =1 for /= 2. These a
values form, in fact, bifurcation points in the sense that the
solutions starting at 7 = « vanish at a finite value of 5 if 1/
J+2)<a<l/(J+1), J=0,2; they tend to zero at
n= — oo if 1/(J+ 1)<a < 1/J and to the constant solu-
tions for @ = a, . The solutions diverge to become unbound-
edatn = — « whena > a,. Thus a becomes the determin-
ing parameter for the behavior of the solution at 7 = — oo.
We are also able to get an equality involving integrals of 2
and F'? over — o <7 < o0, with F= £, which helps us
decide when the solutions over the whole real line exist.

We note that the nonlinear ODE’s for (1.12) corre-
sponding to (1.10) and (1.11) are

f” _23/26—1/2faf'+277f’+2[(1 —aJ)/CZ]f=O

(1.15)
and
HH" — [(a + 1)/alH"* + 29HH'
—2(1—al)H* - 2*?H"' =0, (1.16)
Equation (1.16) is a special case of (1.7) with

a=—(a+1)/2, fx)=2, gkx)= —-2(1~-al),
b= —2%? and ¢ = 0. Besides finding the series solution for
(1.16), and solving the connection problem for (1.15) nu-
merically we study the transition of the several initial value
problems for (1.12) to the self-similar form governed by
(1.15) for the appropriate values of parameters for which
the latter exist.

Thus the present study fortifies our claim that the class
(1.7) does indeed represent the GBE’s. Just as there are
special cases of Painlevé transcendents that now can be ex-
plicitly solved, 19 there are special cases of (1.7), as we have
noted above, that can be solved in terms of exponential and
error functions. These functions seem to appear prominently
as building blocks for (1.7).

The scheme of the present paper is as follows. Section II
transforms (1.12) into (1.15) and (1.16) and poses the con-
nection problem. All the analyses for (1.15) and (1.16) is
carried out in this section. This includes the exact explicit
solutions, the series solutions, and the conditions for the ex-
istence of various types of solutions. Section III deals with
the numerical study of (1.15) while Sec. IV pertains to that
of (1.12). Transition of solutions of the initial value prob-
lems for (1.12) to their self-similar form is treated in Sec. V.
The conclusions of the study are contained in Sec. VI.

Il. ANALYSIS OF SELF-SIMILAR SOLUTIONS—EULER-
PAINLEVE TRANSCENDENTS

As in Paper I, we find self-similar form of solutions of
(1.12) and determine the values of the parameter a for
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which these solutions exist satisfying certain asymptotic
conditions. Therefore, we write

u=1"f((28) "2t bx), 2.1)

where @, and b, are real constants. Substitution of (2.1) into
(1.12) shows that, for the similarity form, 2, = — 1/2a and
b, = —sothat (2.1) becomes

u=t-"Y=f(n), n=xQ8)"2
Equation (1.12) then reduces to

fr =27V fa Logf + [2(1 —al)/al f=0,
(1.15)

where a prime denotes differentiation with respect to . An-
other change of variable

(2.2)

1

ai + (1 —al)a} + 2”201} ,

_ 2 a+1
(k+1)(k+2)ay L 2a

k
i . :
+y {—-—7(k+2—l)(k+l—l)aiak+2—i+

i=1

H=_§"2f-= (2.3)
transforms (1.15) into
HH" — [(a+ 1)/a]lH"* + 29HH'
—2(l—al)H?* - 2¥?H' = 0. (1.16)

As noted in the Introduction, Eq. (1.16) is a special
case of (1.7) with a= — (a+ 1)/a, f(x) =2x, g(x)
= —2(1—aJ), b= — 2*>?, and ¢ = 0. First, we seek a
Taylor series solution for H:

]

H(p) = Z a,n".

n=20
The coefficients a,, k = 2,3,...,n, are found by substituting
(2.4) into (1.16):

24

(k+ Daa,,, + (1 —aJ —k)aga, + 2"k + Da, |

(2.5)
a+1

G+ D(k+1—-Da, a,,_;

+ (1l —ala,a, _; — (k —i)a,.a,(_i”, k=12,..,n.

Thus, we have a two-parameter a,, a, family of solutions.
Fora=1/(J+ 1),J=0,1,2, the parameter a, is uniquely
fixed as @, = — 2*2 a/(a + 1). This special choice corre-
sponds to the exact (explicit) solution we give below [see
Eq. (2.13)]. The free parameter a, gives a single-parameter
family of solutions. This could either be the amplitude pa-
rameter or the Reynolds number

R=—1—f udx,
6 —_— 0

which is the ratio of the area under the profile to the coeffi-
cient of diffusivity of sound.

We find the asymptotic solution of Eq. (1.15) for large
|17] under the condition that f — O as 7— + oo. The linear-
ized form of Eq. (1.15), namely,

ST+ 2+ 201 —a)/al =0, (2.6)
has the solution
fln) =Ae "H,(q7), for >0, (2.7a)
~ B2/ (= )'2] g Ve,
for large negative 7, (2.7b)

provided aJ < 1. Herev = 1/a — (J + 1) and H, (%) is the
Hermite function of order v and 4 and B are the amplitude
parameters. Thus, the linear solution decays exponentially
as 77— oo and algebraically as 7 - — .

We now pose the boundary value or connection problem
for (1.15), namely,

fr =287 fef 4 f 4+ [2(1 — al)/al f=0,
(2.8a)

(2.8b)

f~Aexp(—nH)H, (1) (M),
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|
f-0

and

[fl< oo,

We postpone the discussion of the numerical solution of the

connection problem (2.8) to Sec. III. Here we give some

exact solutions of Eq. (1.15) for certain special values of a.
Fora =1/(J + 1), Eq. (1.15) reduces to

f+ ﬂf’ +%f” — (2/5)1/2fafr.
Integrating (2.9) once, we get

nf+3f =1/ (a+ D2/ f*+ +¢ (2.10)
The constant of integration ¢,, however, is zero since f and
f'— 0atn = oo, according to (2.8).

Using the transformation G =f ~ %, Eq. (2.10) can be
put into the form

G' —2anG = — [2a/(a + 1)]1(2/8)V2

Integrating (2.11), we get

(ﬂl - (XD),

— 0 <N < 0.

(2.9)

(2.11)

172

1/2 n
G=(c— 2 (2—"‘) r e—"dt)emf, (2.12)
a+1\ 6 o

where c is the constant of integration. Thus

_ 2 __2_(&“_)1/2
) = exp "){C a+i\s

7 , - l/a
Xr e ! dt] ,
0

wherec = f ~*(0). The solution u = ¢ = '?* f(n) of (1.12)
with f asin (2.13), we believe, isnew for /=1, =1 and
for J = 2, a = 4, and corresponds to the exact single hump
solution for the standard Burgers equation, J =0, a = 1.

(2.13)
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FIG. 1. The solution of the connection problem (2.8), for J =0, @ = 0.6,
08,10, 1.1,4=1.

Fora = 1/J,J #0, f equal to an arbitrary constant ( #0) is
another solution of (2.8).

We now find an equation involving integrals of F* and
F %, which helps determine the parameters for which single
hump solutions exist. We substitute F=f“ in (1.15). The
resulting ODE in F'is

IFF" — [(a — 1)/2a]F"* + (1 — aJ)F?
+ pFF' — (2/8)*F?F' = 0. (2.14)

Integrating (2.14) with respect to 7 from — o0 to + oo, and
assuming that F and F' tend to zero as 77 tends to + o, we
get

(2aJ—~1)fw den=(1—2a)f Fdny.
— o a - o0

(2.15)
Equation (2.15) yields the following.
(i) For J = 0, the ratio
© F?d
p=IZ=C (1 _2a)/as0, if as).
§= F'?dn

Therefore, the single hump solutions exist if & > 1.

(ii) For J = 1, the only valid choice is @ = . This corre-
sponds to the exact solution (2.13).

(iii) For J = 2, the ratio of the integrals r = (1 — 2a)/
(a(4a — 1))} is positive if } <a < 1. This is the range of a for
which single hump solutions exist.

The numerical solution of (2.8) shows that for @ <1/
(J+ 1),J = 0,2, thesolution f goes to zero at a finite point,
say 77 = 1)y, where f'>0 (see Figs. 1 and 2). This is not
evident from (2.15). However, integrating (1.15) from 7, to
o, we get

2 D=1 (7 pan = — Ly <o.
@ o 2

Since f>0 for 75«17 < 0, (2.16) implies that o<1/
(J + 1). Thus, single hump solutions of (1.15) vanishing at
7 = + oo and at 7 = 7, a finite point on the left, exist only
if @ < 1/(J + 1). Combining this result with those in (i)—
(iii), we find that single hump solutions vanishing at
7= + wandatn =nyexistif 1/(J+2)<a<1/(J+ 1),
J=0,2.

We note that the function f has a maximum where
S =0, f" <0ifaJ <1 [seeEq. (2.8) ]. However, thiscondi-

(2.16)
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FIG. 2. The solution of the connection problem (2.8), forJ=1, a=1,
A4 =0.01,0.1, 1, 10, 100, 1000.

tion is too lax. The consideration of (2.15) and (2.16) leads
to very precise ranges of a for which the single hump solu-
tions exist, as we have delineated in (1)—(iii) above. These
conclusions are confirmed numerically in Sec. HI.

Il. NUMERICAL SOLUTION OF CONNECTION
PROBLEM (2.8)

We solved Eq. (2.8) numerically starting from 7 ~4
[when f and f' are very small O(107°)] and carried the
solution to 7 — — oo for all & for which the single hump self-
similar solution exists. For a given « and J = 1,2, the values
of f and f' at 7 = O were obtained and those of H and H'
were computed from (2.3). The series (2.5) was then
summed up. The series solution so obtained agreed closely
with the numerical solution of the connection problem
(2.8). It was found to be accurate to seven decimal places in
single precision arithmetic over the entire range from
7= — o to 7= + oo. We used analytic continuation of
the series solution as the convergence of the series slowed
down. In particular the numerical and series solutions com-
pared very well with exact solution (2.13) forJ =1, @ =}
and J =2, a = [see Table I for the solution of (1.15) for

TABLE 1. Exact analytic solution (2.13), numerical solution of ODE
(1.15), and series solution (2.4) of (2.9) forJ=1,a=1.

Analytic Numerical Series

7 S I H S
— 3.0 0.000 0004 0.0000004  224.6979 0.000 0004
—2.5  0.0000062 0.000 0062 56.660 64 0.000 0062
—2.0 0.0000610 0.000 0610 18.108 80 0.000 0610
— 1.5 0.000 3828 0.000 3828 7.228 297 0.000 3828
- 1.0 0.001 6222 0.001 6222 3.511 169 0.001 6223
—0.5 0.0049414 0.004 9414 2.011 814 0.004 9414
0.0 0.0114275 0.011 4274 1.322 943 0.011 4274
0.5 0.020 5568 0.020 5566 0.986 3665  0.020 5566
1.0 0.027 6067 0.027 6063 0.851 1571 0.027 6064
1.5  0.023 5493 0.023 5487 0.921 5727 0.023 5488
2.0 0.009 6266 0.009 6262 1.441 398 0.009 6264
2.5  0.001 5869 0.001 5868 3.550 143 0.001 5869
3.0 0.0001182 0.000 1182 13.007 45 0.000 1182
3.5 0.0000048 0.000 0048 64.873 94 0.000 0048
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FIG. 3. The solution of the connection problem (2.8), for J =0, a = 1.1,
A =1, 10, 100, 1000.

J=1l,a=4]. ForJ=0,and }<a <1, f(7) vanishes at a
finite point = 7, while for a>1, f(n)->0as n— — »
(see Figs. 1 and 3). Within the permissible (similarity)
range of a, single hump solutions vanishing at + « (or at
+ « and a finite point 7,) exist, independent of the ampli-
tude parameter A (see Fig. 3). For cylindrical symmetry,
J=1, f-0as9y—> — o ifa=1], foconst#0ifa =1 and
Sf—- o if a> 1. For spherical symmetry, J =2, f— 0 at a
finite point = 7, if } < <4, f> Oas - — oo if <<y,
S—const#0ifa =1and f- « if @ >} [see Table II for a
summary of the nature of the solution for different J and a
values and Fig. 4 for the solution of Eq. (2.8) for J = 2].
Thus for a=1/J, J=12, f- f., a constant #0 as
71— — oo for finite values of 4 (see Figs. 2and 5). ForJ =1
and 4=1, f. =041187 and for J=2 and 4A=1,
J

242
Uiv1,j+12 — 2|1 +—k5 Upjrrz2 U110
Jh? 4h° h
= u; ; — ui.+—u:.1.ui P — Uiy
5tj+1/2 ¥ 5k ] 6 »j( + 1, 1,_1)

h o
(1__6_ui,j+1/2)ui+l,j+l_2(1+ 5k 5

o 2h2 h
= (5 wtea = e +2(1= 5 s = (145

Here, u; ; = u(iAx, jAt) and h = Ax and k = At are spatial
and time mesh sizes, respectively. The difference scheme has
a truncation error O(Ax? + Ar?). However, this scheme is
not adequate to solve (1.12) if the initial profile is discontin-
wous and we wish to visualize the evolution of the shock
wave through its embryonic shock region. The reason is that
the accuracy of the solution of (1.12) with an initial discon-
tinuous profile is severely affected by the implicit scheme
(4.2) and (4.3). Therefore, we take recourse to the pseudo-
spectral scheme. The essence of the pseudospectral scheme is
that the spatial derivatives u,, u,, of the distribution u(x,?)
are computed very accurately by the finite Fourier trans-
form. The finite Fourier transform of u(x,t) is

K—1
uck,t) = 1 Z u(mlx,t)exp( — ik;mAx) (4.4)

TR
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2 2
h )ui,j+1 +(1+i

TABLE IL Single hump, monotonic, and diverging solutions of (1.15).

Behavior at left boundary J=0 J=1 J=2
Solutions vanishing at

nN= — a=1 a=} iKa <}
Solutions vanishing at

7=1, j<a<l l<a<i
Solutions monotonically

approaching a constant

atn= — o a=1 a=}
Solutions diverging to

infinityat = — o a>1 a>}

f.=0.10197. For a=1/(J+ 1) and J=0,1,2, (2.15)
was satisfied very accurately up to six decimals.

1V. NUMERICAL SOLUTION OF THE GENERALIZED
BURGERS EQUATION (1.12)

We solve Eq. (1.12) subject to the initial conditions

0, X < Xgs
u(x,t;) =18(x), Xo<X<Xy, (4.1)
0, x>x,

where the function g(x) has the typical forms shown in Fig.
6. Since the numerical schemes for nonlinear parabolic equa-
tions of Burgers type have been discussed in detail in paper I
and in Sachdev, Nair, and Tikekar,'! we restrict ourselves to
the specific discussion of Eq. (1.12). We use the pseudospec-
tral scheme when the initial profile is discontinuous and im-
plicit predictor—corrector'? scheme when it is continuous.
The difference analog of Eq. (1.12) is

(predictor), (4.2)
iﬂ,lj+1/2)ui—1,j+l
2Jh?
uf{’j+,/2)ui41,j+6 u;; .12 (corrector). 4.3)
Livin
Jop
015
ol =051
oc =0-50
o =0.45 0-05}-
— 1 L2 1
5 -4 -3 -2 -t 0 1 2 3 4

FIG. 4. The solution of the connection problem (2.8), for J =2, @ = 0.4,
0.45,0.49,0.5,0.51, 4 =1.
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FIG. 5. The solution of the connection problem (2.8), for J=2, a =4,
A =001, 0.1, 1, 10, 100, 1000.

holding over the interval (0,27) of x. Here Ax = 277/K is the
spatial mesh size, K denotes the number of mesh points, and
the k; are the wave numbers varying between 0 and K — 1.
The inverse Fourier transform is defined as

u(mix,t) = Z

ki <K /2

u(k;,t)exp(ik;mAx). (4.5)
The spatial derivatives at the mesh points are

u (mAx,) = Y

Ikl <K /2

(ik;Yu(k;,t)exp(ik;mAx), (4.6)

U, (mAx,t) = E

1K)'<K /2

(ik;)*u(k;,t)exp(ik,mAx).

(4.7)

The solution u(x,t -+ At) at the next time level z + Az is ob-
tained from truncated Taylor series

03
u
02
04
(a)
-06 -0-4 -0-2 0 02 0-4 0-6
X
0-3
02
u
041
(b)
~0-5 0 X 05

FIG. 6. The initial profiles for solving Eq. (1.12). (a) Continuous (single
hump), (b) discontinuous.
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u(x,t + At) =u(x,t) + Atu,

At? A’
TR
wherein the time derivatives u,, u,,, etc. are substituted from
(1.12) and its time derivatives as follows:

Uy + 00, (4.8)

Ju o]
u, = _uaux _2—[-+ D) xx
Ju Ju o)
-1 t
U, = — uautx —au U Uy _E_'i'?‘{'?urxx’
U, = —uu,, —2au® " 'uu, —ala— Du" " ulu,
Ju Ju Ju S
1 tt I
—au® unux——?;“’r g ——t"_;“i'E’VnXX-
(4.9)

As the computation commenced we noticed a tail of negative
amplitude immediately after the nonzero part of the profile.
By choosing a time mesh as small as 0.0001, the magnitude
of the tail was brought down to less than 0.000 O1. Being
spurious and negligible, the tail was artificially cut off. The
tail in the subsequent steps was much smaller in magnitude
and as the profile became smoother, due to diffusion and
decay, the time mesh was increased in steps. We switched
over to the implicit scheme when the profile became very
smooth; the time mesh was increased to 0.01.

V. TRANSITION OF INITIAL VALUE PROBLEMS TO
SELF-SIMILAR FORM OR INTERMEDIATE
ASYMPTOTICS

We solved Eq. (1.12) with both continuous and discon-
tinuous initial profiles (see Fig. 6), for J/ = 0,1,2 and for the

— t=11

.

(a)

-0-5 0-0 0-5

O~2r

01k

(b)

-0-5 0

FIG. 7. The solution of Eq. (1.12). (a) J=1,a =1, 8 = 0.01. (b) J =2,
a=}6=002
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FIG. 8. The evolution of the self-similar form. (a) J=1,a =4, 6 = 0.01.
) J=2,a=16=002.

parameter « in the self-similar regime. The initial profile
soon evolves into its self-similar form. Figures 7(a) and 7(b)
depict the evolution and decay of single hump discontinuous
initial profiles, for J = 1,2. Figures 8(a) and 8(b) show the
evolution of these profiles into their self-similar forms. Since
it is not possible to describe too precisely the evolution of
these profiles into self-similar forms graphically, we have
presented in Table III the maximum of u# and its location at
various times as well as the values of 77, = Xnax (262) 712
The approach of 7, and f,., = f(7.x ) to constant val-
ues as the self-similar regime sets in are also manifest in the
table.

VI. CONCLUSIONS

We have studied the nonplanar GBE (1.12) with gen-
eral nonlinearity and found its self-similar solutions. The
form (1.16) again falls in the class of ODE’s (1.7) whose
solutions we have referred to in Paper I as Euler-Painlevé
transcendents. Thus, two GBE’s have representations via
group theoretic methods or similarity transformations in
terms of the Euler—Painlevé equations. This fortifies our
conjecture regarding the connection between Euler—Painle-
vé transcendents and GBE’s. However, we would like to cau-
tion that this has been confirmed only for two equations,
unlike for the case of the Painlevé equations, which have
been shown to represent a very large number of (model)
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TABLE III. Onset of self-similar form (2.2) of (1.12).

t X

max Umax Mmax fmax

(a)J=1,a=16=001

1.00 0.22 0.218 1.54 0.218
1.01 0.20 0.193 1.41 0.195
1.10 0.21 0.147 1.38 0.162
1.50 0.29 0.085 1.65 0.127
2.00 0.38 0.057 1.88 0.113
3.00 0.52 0.034 2.12 0.102
4.00 0.63 0.024 223 0.098
5.00 0.73 0.019 231 0.095
6.00 0.82 0.016 2.37 0.093
7.00 0.90 0.013 2.41 0.092
8.00 0.97 0.011 2.42 0.091
9.00 1.04 0.010 2.45 0.090
10.00 1.11 0.009 2.48 0.090
11.00 1.17 0.008 2.49 0.089
12.00 1.23 0.007 2.51 0.089
13.00 1.29 0.007 2.53 0.089
14.00 1.34 0.006 2.53 0.088
15.00 1.39 0.006 2.54 0.088
) /=2, a=}, 6§=0.02
1.00 0.22 0.218 1.09 0.218
1.0t 0.20 0.183 0.97 0.186
1.10 0.21 0.124 0.99 0.143
1.50 0.34 0.055 1.37 0.101
2.00 0.47 0.031 1.64 0.087
2.50 0.58 0.020 1.82 0.081
3.00 0.68 0.015 1.95 0.077
4.00 0.85 0.009 2.11 0.073
5.00 1.00 0.006 223 0.071
6.00 1.14 0.005 232 0.069
7.00 1.26 0.004 2.37 0.068
8.00 1.37 0.003 2.41 0.068
10.0 1.58 0.002 2.49 0.067
12.0 1.76 0.002 2.53 0.067
14.0 1.93 0.001 2.57 0.065

nonlinear dispersive equations. More GBE’s would have to
be analyzed if and when they arise in applications to see that
(1.7) does indeed represent GBE’s.

Equation (1.12) permits much more analysis than
(1.8), which we discussed in paper 1. Here we have a single-
parameter family of exact explicit solutions, for all geome-
tries J = 0,1,2, which extend the well-known ones for the
plane Burgers equation [see Eq. (2.13) ]. The integral equal-
ities (2.15) and (2.16) clearly restrict the ranges of the pa-
rameter a for which the single hump solutions vanishing at
7= + o, and p = — & Or B = 1, exist. We have con-
firmed these conclusions by numerically solving (1.15) sub-
ject to (2.8b). We have also solved the original PDE (1.12)
directly to visualize the transition of initial conditions to self-
similar forms in the range of «, for which the latter exist.
Thus the ODE’s (1.15) and (1.16) have been shown to be of
considerable importance from both mathematical and phys-
ical points of view.
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The theory of R-separation of variables is developed for the time-dependent Hamilton—Jacobi
and Schrodinger equations on a Riemannian manifold ¥ " where time-dependent vector and
scalar potentials are permitted. As an application it is shown how to obtain all R-separable

coordinates for the n-sphere and Euclidean n-space.

I. INTRODUCTION AND TECHNICAL
CONSIDERATIONS

In the study of additive separation or R-separation of
variables for Hamilton—-Jacobi equations on pseudo-Rie-
mannian manifolds one naturally distinguishes three types
of equations:

D Sg"W.W,. =E,
Lm

(D Y gmWW,. +24W, =0,
ILm

(D) S g W, W, =0.
Lm

Here (g™™) is the contravariant metric tensor with respect to
the coordinate system {x‘} on a Riemannian or pseudo-Rie-
mannian manifold and E, A are nonzero parameters. (We
can also add vector and scalar potentials to the left-hand
sides of each of these equations, since this is only a minor
complication from the viewpoint of variable separation.) See
Refs. 1 and 2 for discussions of the relevance of these equa-
tions to classical mechanics. Although (I) can be considered
as a special case of (1), and (II) as a special case of (III) (in
a space of two more dimensions), the three types of equa-
tions exhibit distinct forms of behavior. In particular, (II)
has proved much more difficult to analyze from the view-
point of variable separation than have (I) and (III).

For a given Hamilton-Yacobi equation, variable separa-
tion research has typically divided into three categories: (a)
explicit determination of separable systems and application
of these results to derive explicit solutions of the equation;
(b) intrinsic, i.e., coordinate-free, characterizations of sep-
arable coordinate systems and their relation to completely
integrable Hamiltonian systems; and (c) studies of the
“quantization problem,” the relationship between additively
separable solutions of the Hamilton-Jacobi equation and
multiplicatively R-separable solutions of the associated
Schrodinger equation,

(I') Ay =Ey,
(1) Ay + 2y, =0,
(IIr'y A¢ =0,

where A is the Laplace-Beltrami operator on the pseudo-
Riemannian manifold.
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For equations of types (1) and (III) considerable recent
progress has been made in all three of the preceding categor-
ies. (See Refs. 3 and 4 for reviews of this work.) The present
paper is a contribution to category (a) for equations of type
(II). Shapovalov has already announced the solution to the
category (b) problem for all these equations, see Ref. 3.

In the latter half of this section we point out the sense in
which (II) (with added time-dependent vector and scalar
potentials) is a special case of (1II) and use this connection
to work out the technical conditions for a coordinate system
to be R separable for (II). We show that corresponding to
each R-separable coordinate system { y' } for (II) on a Rie-
mannian manifold V" there is associated a unique “time”
coordinate y' and that the transformed equation in these new
coordinates is again in Hamilton-Jacobi form (II) on the
same manifold V". The transformed Hamiltonian and po-
tential may, however, depend on the new time coordinate y*.
If there is no dependence of the Hamiltonian and potential
on y' (the regular case) then we can use Lie theoretic meth-
ods to analyze such coordinates.’”’

In Sec. II we turn to the principal topic of this paper, the
case where the transformed Hamiltonian #°(y") is strictly
»' dependent. We determine all such time-dependent Hamil-
tonians for the n-sphere S” and Euclidean n-space E”, and in
Sec. III we show how to compute all of the associated R-
separable coordinate systems for II (with added time-depen-
dent potentials) on these manifolds.

The solution of the regular case for §” and E " is taken
upin Sec. IV. In Sec. V it is shown that all our results extend
to the time-dependent Schrodinger equations on.S™ and E ™.
Finally, in Sec. VI we give an intrinsic characterization of
those equations of type (III) for which coordinates {¢,x'}
can be chosen such that (III) restricts to (I1I). All functions
appearing in this paper are assumed to be locally analytic.

Technically our task is to analyze the possible R-separa-
ble solutions for the time-dependent Hamilton—Jacobi equa-
tion

W, + 3 gmOW W+ 20 Y AW,

m=1 =1

+ A2V (x,t) =0, gm=g". (1L.1)

Here A is a parameter, {x} is a local coordinate system, and
g™ (x) the contravariant metric tensor on the Riemannian
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manifold V" In particular, the matrix {g""} is positive defi-
nite. A solution of (1.1) is a function W = W(¢,x) that satis-
fies this equation.

We must first state precisely which transformations will
be permitted in the search for separable solutions. We will do
this by considering ( 1.1) as a special case of the (conformal)
Hamilton-Jacobi equation

n+2 .
Z K*“(z)Z,.Z, =0, (1.2)
uv=1
where
Z=x, i=1,.n z"t'=t z"tl=r,

Z=/‘LT+VV, Ki,n+2=Kn+2,i=Ai’
Ki=g,

Kn+1,n+2=Kn+2,n+1 — 1,

1<, j<n,
Kn +2,n+2 — I/,

and all other matrix elements of K * vanish. Thus, the solu-
tions of (1.1) can be identified with those solutions Z of
(1.2) for which Z, = A (after which we set 7 = 0).

The general theory of variable separation for the Hamil-
ton—Jacobi equation (1.2) (and its relation to Lie symme-
tries) is well understood®® and we need only modify this

theory to the special requirement Z_ = A. In the following
paragraphs we present the modification.
We pass to separable coordinates y',....p" * ', u, where

xF=x*y), k=1,.n,
t=1t(y), 7=p—R(y),

and R is a function to be determined. Then (1.2) transforms
to

(1.3)

2Z,( [+ 21Z, + GUR,-ZJ.) + G"jZ,.Zj

+ Q[+ @' IR, + V+G'RR)Z,Z, =0, (14)
where we observe the Einstein summation convention, the
variables J, jtake the values 1,2,...n + 1, Z, = Z,,R, =R,,
and 4 '(dy'/dx") = &*. Note that
Z

ijs

> §mTOWW,.=Giy)Z
Im=1
The separable coordinates y,u are of three types: there are n,
first kind variables y° n, second kind variables y’, and n,
ignorable variables y* and u; n, +n, +n;=n+ 2. The
contravariant metric tensor for Eq. (1.4), expressed in these
coordinates, must be of the form

Z, =4 (L5)

n, n, ny—1 7]
", H 6% 0 0 0
n2 O 0 Qf?(yr)Hr_z ri (yr)Hr_z
A . (1.6)
n;— 1t 0 OffOMHH.? QY K¥OHH* QY FIOHH* .
Iz 0 Qk,(0HH; > QY FIOHH? Q> F WHH*
[
Here there is no summation on n repeated indices unless £°+ «/° + QH ; ?R, =0,
explicitly indicated, and the indicated sums are
i = 1,..,n, + n,. (This expression follows immediately from £ + &+ QH*Y f°R; = Qk, H?,
Theorem 5 of Ref. 9.) The metric 4
(1.9)

n n + ny
ds? =Y H20%) @D+ Y HIp) (@)’

a=1 r=n,+1

(L.7)
must be in Stdckel form. The matrix elements are indepen-
dent of the ignorable variables y* ,u.

Comparing (1.4) with (1.6) we have the following con-
ditions:

Gab=QHa—28ab’ Grs=Gar:O’

G¥=QYKP¥H? G*“=0, (1.8)

G =QfH ",
and

1006 J. Math. Phys., Vol. 28, No. 5, May 1987

£+ @+ QY K¥PH Ry + QY fIH "R,
B.i s
=Q2F?Hi_2’

23 [+ IR +V+ I GRR =0 F H "
‘ ij 7

Here Q = Q(y) #0and each of /%, k,, K %5, F, %, depend
only on the variable denoted by the subscript. Finally, we
have that £ p, is a Killing vector for the Hamiltonian G %p,p,,
i.e.,

€&, GijPin}r-O, (1.10)
where {-,"} is the Poisson bracket in the canonical coordi-
nates ', u;p,,p,, and there is a closed one-form dr
=df=f; dy' such that

fEi=1, £GY=0, j=1,.n+1 (1.11)

Conditions (1.7)—(1.11) are necessary and sufficient for R-
separation of (1.1) in the coordinates y'. The R-separable
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solutions take the form

n+1
W= +AR(y) + 2 weuh,
i=1
where R satisfies conditions (1.9). (It is the presence of a
possibly nontrivial R which leads to the term R-separable; if
3R =0, i#j, the system { y* } is separable.)

We can simplify our problem somewhat by noting from
(1.5) and (1.8) and the requirement (g"™ ) positive definite
that n,<1.

Theorem 1: If the time-dependent Hamilton—Jacobi
equation (1.1) is R-separable in the coordinates { y'} then
the transformed equation (1.4) can be put in time-depen-
dent Hamilton—Jacobi form (with potential)

(1.12)

UZ,+ Y G'Z.Z,+1 Y U°Z,+4°U=0,
i, j#f a#tf
(1.13)

where df = dt. There are two possibilities:

Case I: n,=0. Then f=)°® is ignorable and
9,G"=9,U*=9,U=0. The metric (GY), i,j#8 deter-
mines the same Riemannian space ¥ as does (g"").

Case 2: n, = 1. Then f = y° is a second kind coordinate
and at least one of G¥, U, U has nontrivial f dependence.
For each fixed value of y* the metric (G ¥(y*)), i, j#s, deter-
mines the same Riemannian space ¥ as does (g™).

Proof: Suppose (1.1) is R-separable in the coordinates
{»}. Then from (1.11) there is a function f such that
df =dt = f; dy', where £, = | and

£Gi=0, j=1,.n4+1. (1.14)

It follows immediately from (1.8) and (1.14) thatf, = Ofor
a = 1,...,n,. Furthermore, since Rank(GY) = n and 8y,G"j
=0 for each ignorable variable y” we must have
d,5(fi/f;) = 0 whenever f; 0. It follows that f must be of
the form f = h(u,v) where

u= z C,0%, v=y.

(If n, = 1 then f,C, may depend on the single second kind
coordinate y’; if n, = 0 then the C, must be constants.)

Now suppose n, =1 and 4,4 = 0. Then f= f(y") and
from the requirement £;£’ = f.£" = 1 we see that 3,6"=0
for i#r. Thus, by a change of second kind coordinate
¥ =k(y") if necessary (which preserves separation), we
can assume £’=1and &"=0. Further, the condition
[,G7=0implies G” = 0forj = 1,...,n + 1, so the n X n ma-
trix (GY), i, j#r is nonsingular. Thus Eq. (1.4) takes the
form (1.13) and since f= y” is not ignorable, at least one of
G Y U<, U has nontrivial f dependence.

Next, suppose 7, = 1 and d, & 70 where at least one of
the C, is nonzero. Without loss of generality we can assume
C, = 1 for fixed ignorable variable y*. Then

L h,Csy° +h,
()=o)
fy hu

h
=c,g+cﬁa“(h")=o

u
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since f, /f,, is independent of each ignorable variable y*. Set-
ting 8 = ywehave d, (h,/h,) = 0.Thus C;=dCz/dy’=0
for each § and the C; are constants. Further, we have
f=h(u,v) = H(u + K(v)) for some function K. We can
now pass to a new set { y'} of equivalent R-separable coordi-
nates such that y° = C; y# + K(p"). (See Ref. 10 for a dis-
cussion of the pseudogroup of transformations taking sep-
arable coordinates into equivalent systems of separable
coordinates.) Dropping the primes, we have f = f()° ) and,
using (1.11), €4 =£°%(°)#0, G*=0,i=1,..,n + 1 and
&% = 0. From the third equation of (1.9) we have

n 4+ n,

£°=0 Y FIOHH,?=QF #O0.

i=1
Since F'is a Stackel multiplier (see Ref. 9) we can pass to an
equivalent Stiickel form H 2 = FH ?so that 0 = £ ®. Dividing
(1.4) by the common factor £® = Q [see (1.8) and (1.9)]
we obtain (1.13), where each term is independent of f = y°.

Finally, suppose n, = 0,50/ = h(u) with$, h #0. Then
a simplification of the argument in the preceding paragraph
shows that we can take f = y° and obtain (1.13), where each
term is independent of y°. Q.E.D.

We have shown that corresponding to each R-separable
coordinate system { y’} for the time-dependent Hamilton—
Jacobi equation on a Riemannian manifold V" there is asso-
ciated a unique time coordinate f'= y® or f = y". The trans-
formed equation in the { y'} coordinates is again in time-
dependent Hamilton-Jacobi form for a Hamiltonian on V"
The transformed Hamiltonian is strictly time dependent if
andonlyif f=y".

In the following we will regard the problem of finding all
R-separable solutions of a given time-dependent equation
(1.1) as solved once we reduce it to the problem of finding all
separable solutions of explicit time-independent Hamilton—
Jacobi equations of the form

> G‘jZ,.Zj+AZ UZ, +A*U=E, (1.15)
=1 i=1

where (G Y) is the metricon V' ".
For f = y° this problem was solved in Ref. 7. There we

studied all mappings of the form
t=T(fy), x=X(fy), W=Z+Ah(fy) (1.16)

that take (1.1) into another evolution equation (1.13), a
“related” evolution equation. It was shown that there is a
one-to-one correspondence between (equivalence classes of)
related Hamilton—-Jacobi equations and conformal symme-
tries for (1.1) of the form . =q(5,x)p, + y"(t,x)pxi
+ Ak(t,x), where g5#0; alternatively,

L=g3,+7 3, +Akd,. (1.17)

If L is a conformal symmetry with g0 then one can show
that d _,q = 0 and that we can introduce new coordinates £}y
and a new dependent variable z such that

d=qd, +v'a,
t=T(f), xX=X'(fy),
W=Z+Ah(fy),

and (1.1) transforms to the related Hamilton-Jacobi equa-

(1.18)
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tion (1.13) with f~independent Hamiltonian.

Conversely, if case 1 of Theorem 1 occurs for (1.1) then
the variable f = y° is ignorable. This means that the operator
3y5 is a conformal symmetry for (1.13) which in turn trans-
forms to a conformal symmetry for (1.1) of the form gd,

+7/d_, + Ak d,, with g#0.

Note that when f is ignorable we can require
Z, = — E /24 and reduce (1.13) to the time-independent
equation (1.15). Thus, to find all R-separable coordinate
systems {£,y} for (1.1) corresponding to case 1 we first enu-
merate the conjugacy classes of symmetry operators in the
conformal symmetry algebra & for (1.1)."! Choosing a rep-
resentative operator L in each conjugacy class we make the
transformation (1.18) of (1.1) into a related evolution equa-
tion and then find all R-separable systems { y/} for the re-
duced equation (1.15). (Of course, for some choices of L the
reduced equation is not R-separable in any coordinate sys-
tem.) See Ref. 7 for more information concerning this proce-
dure, and Ref. 4 for a more general point of view.

We can thus regard case 1 of the preceding theorem as
well understood from the viewpoint of Lie symmetries.

Ii. TIME-DEPENDENT HAMILTONIANS

We now turn our attention to case 2 of Theorem 1, the
case where f = y” and the transformed equation (1.13) hasa
time-dependent Hamiltonian. Our aim, not entirely
achieved, will be to enumerate the instances where this type
of R-separation occurs for the Hamilton-Jacobi equation

1.1).

( Iz‘or simplicity we will limit ourselves to coordinate sys-
tems that are orthogonal on ¥ ". In other words, the metric
tensor (GY), i,j#f, in (1.13) should be diagonal. (For
many spaces, such as Euclidean spaces or spaces of constant
curvature, only orthogonal separation can occur, so this is
no restriction at all.'*) Since orthogonal ignorable coordi-
nates can always be considered as special cases of type 1
coordinates, without loss of generality we can assume that
the separable coordinates are labeled y° (a = 1,...,n), ", ;
n, =n,n, = n, = 1. [Thisis true so long as we restrict atten-
tion to (G Y) and ignore the vector and scalar potentials. ]

With the above assumptions our problem simplifies sub-
stantially. The second equation in (1.9) becomes
1 = Qk,H > Replacing the Stickel form H ~% H [ * by
the new Stickel form H'~*=k H * H';*=H,? we
can assume k, = 1. Furthermore since H ' ? is a Stackel
multiplier” we can pass to a new Stickel form with
H"'7*=1, H"7*’H'7%,Q"=QH',*=1. Thus in
terms of the coordinates y°, y", u we have (dropping the
primes)

H *=1,

»

H; > =H;*0), Q=1 (2.1)

The transformation from ‘“‘standard” to separable co-
ordinates becomes

xk=x*(p*y"), k=1,..,n,
0y (2.2)
t=y, 7=p—R0OY),
and the metric becomes
“ ij —_ - -2 b 2
> &pwpa= 3 HI*00p,, (2.3)

1 a=1

i

iLj
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so for each fixed ¢ the right-hand side of (2.3) defines a
Stickel-form metricon V' ".

To analyze this one-parameter metric we recall a few
facts about Stickel form metrics. An n X # nonsingular ma-
trix S(y) is said to be in Stackel form if S; = 8;( y') and each
of the elements (S ~ ')V, /= 1,...,n, is nonzero. Set

Xiyp) =3 (S (2.4)
=1
Then
{72}=0, i,j=1,.,n, (2.5)

where {-,"} is the Poisson bracket on the 2(n + 1)-dimen-
sional symplectic manifold with canonical coordinates
(', p:,t,p, ). Here 57, is the Hamiltonian associated with the
Stiackel matrix S.

Theorem 2: Let

xH =Hp;+ Y H;yn)p;
a=1
be a Stiickel form Hamiltonian with # 72 = 1 and n»2, and
suppose ¢, is in the domain of ¢. Let

F() =Y H*yvbp;.

a=1

Then there exists an n X 1 Stiackel matrix S(y) such that

F(1) = i & (),

k=1

(2.6)

where the 77, are defined by (2.4) and the g, are scalar-
valued functions with g, (7,) = &,,.

Proof: Since 5 is a Stéickel form Hamiltonian there
existsan (# 4+ 1) X (n 4+ 1) Stackel matrix T’ (y,t) such that

Too(t) To](t)"'Ton(t)

Tlo(yl) Tll(yl)"'Txn(yl)

T = (2.7)

TnO(yn) Tnl(yn)‘..Tnn(yn)

and (T " D®=H '=1,(T""Y=H;%a=1,.nlt
follows that

1 Ty - T,

0O T T
T,, — ' . 11 1n

O Tnl Tnn

is also a Stidckel matrix for #, since (7'~ )% = (T"~H%
i=0,1,...,n. We can multiply column / of 7" by a nonzero
constant ¢ and column j by ¢! where i#j, i,/ i,j>0, and
obtain another Stickel matrix for 77”. Furthermore, the in-
terchange of two such columns T;, T; or the replacement of
T, by T; + ¢'T; again leads to a Stickel matrix for #”. It
follows that there is a Stickel matrix for #” of the form

1 1
_ 0 Su.(y ) Sln'(y ) ’ (2.8)
O Snl (y'l) Snn (y'l)

where g, (¢,) = 8, . Thus #°(¢) is given by (2.6) where the
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&, are computed from the nXn Stickel matrix

(Sap O))- Q.E.D.
Corollary: {#°(t,), 7 (t,)} = 0.
Since F7°(t,) = 7, and
i gijxi = H(t) 2.9)
Lj=1

we see that 7, is a Stickel form Hamiltonian for V" and
that 7#°(t) is a one-parameter family of such Hamiltonians.
The requirements that #°(¢) corresponds to V" is a very
strong condition on the functions g, (¢) for any choice of
separable Hamiltonian 77°,.

To show how restrictive these conditions are we consid-
er the “generic” separable coordinates in Euclidean space
E " and on the unit sphere S'*,

X 1= z f W) 2 H 3 ZP’Z,
.~=11r,-#(y y’) i=1
where f is a polynomial with distinct real roots. This is a
separable Hamiltonian on S " iff deg f=n + 1 (Jacobi ellip-
tic coordinates), and on E " iff deg f = n (ellipsoidal coordi-
nates) or deg f = n — 1 (paraboloidal coordinates). The re-
lated n X n Stickel matrix is'?

= ()" /0N,

In general, the orthogonal coordinates {x'} are separa-
ble on E" provided the metric ds* = 37 _, H2(x) (dx")?is
in Stickel form, i.e.,

(2.10)

ij=1,.,n. (2.11)

dy logH? —3;log H}d, log H; + J, log H?9, log H?}
+d, logH?d; log H; =0, j#k, (2.12)
and R, = 0 where R is the Riemann curvature tensor. For

S™ (of constant curvature — 1) this last condition is re-
placed by

Ry = —HIH}, i#),
R,.. =0, Ak distinct.

Eisenhart' (p. 269) has shown that for both E"and "
these conditions imply

dy logH; *=0, (2.14)

Suppose n>>3. Then condition (2.4) applied to 7#°(2), (2.6),
where 7, is given by (2.10), becomes

I 108( 2 & () H Y- 'yi"l>
I=1 << <ip_
in#i

(2.13)

i, j,k distinct.

=0, i,j,kdistinct. (2.15)
The solution is
Hi_z(y,t)
=f—(’IV)——g €] H (1+A(t)y), i=1,.,n.
x#j(y i#j

Clearly, g, #0. Suppose & #0. Under the change of coordi-

nates x’ = y'/(1 + hy‘) the metric transforms to
—2( ) = M(l hx')"+ 2. (D),
Ty (X" — %)
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which is again of the form (2.10), except that the polynomial
in the numerator is of order n + 3, which does not corre-
spond to E"” or S". Thus & = 0 and

FACIIGR

Tixtj 67  — y ’)

It is well known that for g,(¢) #1 and V" = .5 " the factor g,
changes the curvature, so that the transformed metric is not
one on §". We conclude that for Jacobi elliptic coordinates
on §" the only possibility is #°(¢) = 7, whereas for ellip-
soidal or paraboloidal coordinates on E " the only possibili-
ties are dilatations #°(t) = g,(¢)57,. For n = 2 a similar
but simpler argument than the preceding one yields the same
result.

We can now treat the most general separable coordinate
system on S”. In Ref. 12 it is shown that the most general
separable system can be constructed by “nesting” collections
of the generic Jacobi elliptic coordinates. The infinitesimal
distance on S ", expressed in a separable system, can always
be written in the form

H.'_z(y,t) =

4 (y —er)
do*= Y do?|—= ]
© I;l wl[ m;e](e )
n, L YY)
L9 ——"”“(y, YDy (2.16)

4 S 7N —e)

Here the { '} are Jacobi elliptic coordinates on.S ™ and each
dw? is the infinitesimal distance of a S’ I where 32 i Py
+ n, =n, and p<n, + 1. The coordinates on each SF are
again separable and the metrics dw? can be expressed in
terms of separable coordinates by using (2.16) recursively.
[The case of Jacobi elliptic coordinates on .S " corresponds
top =0,n, = nin (2.16).] In Ref. 12 a graphical procedure
is presented to elucidate that construction, and the separa-
tion equations for the Hamilton—Jacobi equation are written
explicitly. Thus for every separable system on S”" it is
straightforward to compute the Stickel matrix and to con-
struct the quadratic forms 5, (2.6). The y coordinates in
(2.6), since they are separable and J#°(¢) is analytic in ¢,
must be of the same type (2.16) as the coordinates of
| = 7 (t,). Though the details are somewhat tedious, it is
not difficult to use the argument of (2.15), and its following
paragraphs, recursively in (2.16). The results of this argu-
ment, followed by imposition of the curvature conditions
(2.13), is the following.

Theorem 3: Let S be a Stickel matrix corresponding toa
separable coordinate system on S ", n>2, and define the cor-
responding Hamiltonian 5, and constants of the motion
Hyi=2,.,n,by(2.4). Then#(t) =Z27_,g,(t)F7 isan
S " Hamiltonian with 77°(¢,) = 7, iff g, (¢) = 6.

The most general separable coordinate system on E ” is
also determined in Ref. 12. It is shown there that in the co-
ordinates of such a system the metric ds? on E " can be ex-
pressed as

2= 3 ds,

I=1

(2.17)
where each ds? is an Euclidean space metric itself. In turn we
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have

ds'}-_— i 77;21()71_6’,1)

do? + do?,
=1 7 (g — €)) '

(2.18)

where do; is the infinitesimal distance corresponding to el-

lipsoidal or paraboloidal coordinates { y' } for E™, and each
da? is the infinitesimal distance corresponding to a separable
system on the sphere S7". Here n = 32 (N, +p,) and
n; <N, for do} ellipsoidal, n, <N, for do} paraboloidal.
Thus the most general separable system on E " is constructed
by first decomposing E " as a direct sum of Q mutually or-
thogonal Euclidean subspaces and then in each subspace
nesting collections of Jacobi elliptic coordinates into either
an ellipsoidal or a paraboloidal system. The generic ellipsoi-
dal or paraboloidal systems for £ " correspond to the case
0=1,n=0,N=n.

From the results of Ref. 12 it is straightforward to com-
pute the Stackel matrix corresponding to each separable sys-
tem for E " and to construct the quadratic forms 5, . Again
the y coordinates (2.6) must be of the same type (2.18) as
the coordinates of #°, = #°(,). It is tedious, though not
difficult, to use the argument of (2.15) and its following
paragraphs recursively in (2.18) and (2.16), followed by
imposition of the Euclidean space curvature conditions to
obtain the following.

Theorem 4: Let S be a Stickel matrix corresponding to a
separable coordinate system on E ", n>2, and let

=3 ds
I=1
be the associated decomposition of the infinitesimal distance
on E " into distances ds? on Q mutually orthogonal Euclid-
ean subspaces. Let " be the Hamiltonian on the I th sub-
space so that 7%, = 27 (t,) = £¢_ 5", Then 7°(t) is an
E " Hamiltonian for all ¢ iff it can be expressed in the form

Q
() =Y (P,
I=1
with i, (2,) =1, 1= 1,...,0.
To date we have been unsuccessful in proving Theorems
3 and 4 without using the explicit list of all separable coordi-
nate systems on .S " and E”.

ill. COORDINATES ON S” AND E”

Continuing our study of case 2 of Theorem 1, let { y*,y*}
be an orthogonal separable coordinate system on the Rie-
mannian space ¥ " such that the associated infinitesimal dis-
tance

ds= % H}(dy)’= Y Hi(dy)*+ Y H(dy")*

i=1 a a
is in Stackel form [with Stiackel matrix (2.5)]. Here
H;7?=3"_, K®(y)H ;% Let 5, be the Hamiltonian
in these coordinates and suppose we have determined a one-
parameter family 77 (¢) = 27_ g, (t)77, of Hamiltonians
on V" such that 77°(¢,) = 7,. We now study the remaining
conditions on g; (), {)°,y*} so that {y",p°,y*} will lead to R-
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separation of the time-dependent Hamilton-Jacobi equation

UW, + 5 drOW W,

Im=1

+24 S A0 W, +AV(x) =0.

=1

(3.1)

Here {x'} is a given coordinate system on V" and we must
have

X=Xy y), i=1.,n t=y. (3.2)
The remaining conditions to be satisfied are
W = —H-R,, a=1,.n, (3.3a)
ot
D= —H R+ 3 FUOOH T
a=1
= —H; R, +RB* a=n,..n, (3.3b)
2R, +V— 3 H R*+23 R, 3"
i=1 a
(3.3¢c)

= ST+ F, 00,

where R, = 8yaR (y'»°) and R,,R, are defined similarly.
Each .#,, ¥ ¢ is a function of a single variable y’. We will
discuss the solution of these equations with special emphasis
on the important examples S” and E".

First note that (3.3a) and (3.3b) can be written in co-
variant form,

a_zi

ot
where (G Y) is the metric for ¥ " in the coordinates z'. Here,
2' =2 (y°y%). We can choose the initial coordinates {x'}
and the {z’} to be in a convenient standard form and such
that z/ = Z'(x,1), i = 1,...,n, with Z(¥,t,) = x. We will
use the integrability conditions for (3.4) to determine the
possible forms of the functions Z ', and then express the {z'}
in terms of separable { y°,y°} coordinates.

Consider first the space S'". It is convenient to identify
S" with the unit sphere x'x=Z2"*/'(x¥)’=1inE"""
where {x!,....x" * '} are standard Cartesian coordinates. We
choose {z',...,z" * '} to be Cartesian coordinates of the same
type. Since the motion group of S *is O[n + 1] (see Ref. 13,
p- 23) it is clear that

z(t) = O(1)x,

= —GYzNHR, — '+ RB', i=1..n (34)

oe0[n+1], Oy) =1, (3.5

where 7 is the identity matrix. Equations (3.4) become

n+1

S 0,0,7= —R,— '+ B,
Li=1
i=1..n+1 zz=1. (3.6)
The integrability conditions for (3.6) imply
n+1 .
L —B'=—R,+ Y X,(nz5, X=00"". (37

s=1
This can be regarded as a necessary condition on the vector
potential in order that it permit variable separation. The sec-
ond term on the right-hand side of (3.7) is “trivial” in the
sense that it can always be removed by transformation to an
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appropriate rotating frame x(¢) = a(t)x, 6&0[71 +1].
[ Thus every separable potential is via the foregoing transfor-
mation equivalent to a vector potential which is a gradient

— #' = —d_ R(x,t) in Cartesian coordinates.] As-
suming the equivalent vector potential is a gradient we can
remove it by an appropriate R transformation and then have
Z=xt=y", 7" = B, R =R(2).

Thus Eq. (3.1) transforms to

MZ+2H‘%wT+M2F%HH”Z

i=1

+3 F

where { y°y°} is a separable system for the time-indepen-
dent Hamilton—Jacobi equation on §".'*

Theorem 5: Nontrivial R-separation corresponding to
case 2 does not occur for the time-dependent Hamilton-Ja-
cobi equation on S*, i.e., every such separable system arises
from a separable system for the time-independent equation.

Now we examine the same problem for E . As standard
coordinates {x',....x" } we choose Cartesian coordinates. By
Theorem 4, corresponding to a set of separable coordinates
for E ", there is a decomposition of this space into Q mutually
orthogonal Euclidean subspaces E ). Let {z},...,2)"} be Car-
tesian coordinates on the J th such subspace (of dimension
N, ). The Hamiltonian on E Y is # = 3™ | @, .)? and we

have

LONH =0, (3.8)

HD = 2 h2(FD, (3.9)
where 4, (t,) = 1. Since the motion group for E " is the Eu-
clidean group'® (p. 23), it follows that the two coordinate
systems are related by a t-dependent Euclidean transforma-

tion,
DY ()z(t) = 0@)x + c(¢), (3.10)

where O is an n X n orthogonal matrix, ¢ is an n vector, and D
isan n X n diagonal matrix whose diagonal term correspond-
ing to z4 is A, (¢). Equations (3.4) take the form

(DD ~'+ DOO ~'D ~YYz — DOO ~'¢ + D¢
= — DR, — o* + B~ (3.11)

The integrability conditions for (3.11) imply that there
exists a function ¢(z,¢) such that

(Mi_ -%i)Di_2: g _Di_l Z Oilolek_ le,
Lk=1
(3.12)
where
—D?(Rzi +9,)
=DiDi_ lzi+Diéi +D, z Oilok,ck. (3.13)

Lk=1
Here D, (t) = D,;(2)6,. This implies that in the standard
Cartesian coordinates the vector potential has the form

A/(x,t) — Bi(x,t)

==Y 0,(0,()x + (3.14)

hs=1

Hx,-(x,t).

1011 J. Math. Phys.,, Vol. 28, No. 5, May 1987

Just as in the S” case we can remove the first term on the
right- hand side of (3. 14) through a coordinate transforma-
tionx = O(t)x, whereO ~'0 = — 0 ~'0.Thus any separa-
ble vector potential is equivalent to a potential in gradient
form (4/— B/=H ,), so that (&' — #)D ;[ *=gq, and
we can assume O(z)=I in (3.12) and (3.13). Then by
meansofan R transformation (which does not affect separa-
bility) we can takeg =0and &' = #".
Thus

R0 () =X + (), i=1,.,N,, J=1,.,0,

(3.15)
where we have adopted the same notation for the vectors x,¢
as for z. Substituting (3.15) back into (3.11) we obtain

(h;/h3)2y +&5/h; = — R,
so that

R--% 3

J=1i=1

__( )2+iz" +f(1) (3.16)
2 1y TR ' ’

We consider first the special case where the original vec-
tor and scalar potentials vanish: &/‘ = ¥ = 0. Then #' =0
and we can assume 7; = 1. Substituting (3.16) and (3.9)
into the remaining condition (3.3c) we find

Q N,
[—(h 7 (E)?
1—1.41
d (&N . h, &\
- i _hZ Y i -
dy'(h,)" ’(hz "*‘h,) ]
—'zhl(‘/aJ(yl)H 09+ F,0M). (3.17)

Since, for each fixed J, the N, coordinates z/, are functions of
the N, coordinates 5, a necessary condition for (3.17) to
hold is that the coefficients of (z})? and z/, on the left-hand
side are constants times 4 2,
hi2h —2) —2hin;®

¢ J/ h 7= J

(3.18a)
(3.18b)

It follows that under the R transformation the original Ham-
ilton—Jacobi equation

=aJ’

UW, + 3 W= (3.19)
=1
maps to
2Z, + 2 2(22 +——(zJ)2 ZBSZS)hi—
J=1i=1
(3.20)

where the a;, B, are constants. Note that the original Ham-
iltonian “decouples” into @ Hamiltonians

EPZ‘

i=1
The separable coordinates { y} are just those that separate
the time-independent Hamilton-Jacobi equations %
=EJ=1,.,0.
Equation (3.18a) is equivalent to (h 72 =0 and has
the general solution

hi(t) = (b{t* +bjt+b3) 7,
26{b3 —1(b3)? =a,.

H = ’@V—w%}

(3.21)
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We can simplify the ensuing argument by identifying coordi-
nate systems that are equivalent under the action of the Gali-
lean (and dilatation) symmetries of (3.19), see Ref. 2, Chap.
2. Thus, in addition to the Euclidean symmetries already
employed, we identify systems related by dilatations -,
X —aXx, time translations t—¢ + /8 and velocity transforma-
tions x —x + ¢¢. Then, in case a; #0 for fixed J we can per-
form a translation of the {Z, } coordinates to achieve 5 |, = 0,
¢, =0,i=1,...,N,. Thus the decoupled Hamiltonian is
FD — g p2> +£i_(zi )2] (3.22)
1 “~ 2 ) J ’ .

the “harmonic oscillator” for a; >0 and the “repulsive os-
cillator” for a; <0. Here

hy (02, (05) =x;

and the possible orthogonal separable coordinates y5 are just
those that separate "’ = E.

In case a; = O for fixed J we can perform a rotation of
coordinates {z/ } toachieve 8 ; = Ofori = 2,...,N,. The cor-
responding decoupled Hamiltonian is

N,
T =3 [P, — 2] (3.23)
i=1
the “free fall”” Hamiltonian. Here
kN 0z (05) = x5 + 8% (1),
where
hy (1) =((b3/2)t+ 1),
b3 =0,

" _[B}(tz/z),
TN 2B/ B/ + 1), bY 0.
(3.24)

We have used the property that (by a suitable time transla-
tion if necessary) we can assumet, = 0, 4, (0) = 1. The pos-
sible orthogonal separable coordinates y5 are those that sep-
arate #°”’ = E.

Although we will not state our results as a theorem, we
have reduced the problem of finding all R-separable coordi-
nate systems for the time-dependent Euclidean equation
(3.19) (with zero potential) to the problem of finding all
separable coordinate systems for the time-independent
Hamiltonians (3.22) and (3.23). The answer to this last set
of problems is known.'®

In the general case where the vector and scalar poten-
tials do not both vanish we have &/ = %' so that in the
coordinates { %, y%, y'}, &% = /" =0,

A =B = 3 FEOIVH T+ FL).

a=1

Then Eq. (3.1) transforms to

2AZ, + Z h.?}(t)Hﬁz(y.I;)Zg,i
Ti
+21 Z(Z?ia VORIOH 2 + F?(t))la
a \J,a

+ 3 FUNhIOH =0, (3.25)
J.a
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Fo ORIOH 200 + ﬁ“?(t))aaR
aJ 2 i \2 2 i iN2
[—z—h,(mz,) 2B — (&) ]

+ Y hIOF L, ONH 05, (3.26)
Ja

and a,, B are defined by (3.18). Since, for each fixed J, the
N, coordinates 2, are functions of the N, coordinates y%,
condition (3.26) is a strong restriction on V. Clearly, given
any separable system { y5,y7} for E" there always exist po-
tentials ¥ for which (3.26) is satisfied. The 4, (¢) must be
determined from this functional equation.

V. COMMENTS AND EXAMPLES

We can also use the results of the preceding section to
find all R-separable coordinate systems for the time-depen-
dent Hamilton—Jacobi equations on S” and E” that corre-
spond to case 1 of Theorem 1, i.e., such that the new time
coordinatef, (1.13), isignorable: f = y°. (Here we will treat
only the zero potential equations. The nonzero potential
treatment is similar.) Since the time-independent Hamil-
ton—Jacobi equations on S * and E " separate only in orthog-
onal coordinates,'> we can assume n, = n,n, =0, n, =250
that the transformed equation (1.13) takes the form

WZ,+ 3 H;*ONZ5, + AU =0.

ForS", &%= Q=1s0y® = . Furthermore, the argu-
ment leading up to Theorem 5 shows that the separable { y° }
coordinates are expressible entirely in terms of the {x'}, i.e.,
d,y? = 0. Combining this fact with Theorem 5 we have the
following.

Theorem 6: Every R-separable coordinate system for
the (zero potential) time-dependent Hamilton—Jacobi equa-
tion on S " is purely separable and of the form {z,y°} where
{y°} is an orthogonal separable system for the time-indepen-
dent Hamilton-Jacobi equation on S ",

For E " and case 1 the results are a bit more complicated.
It is easy to see that case 1 for E” corresponds to @ = 1 in
(3.9) where now we must allow for the possibility that
h2(t)=h?(¢t) = 1. Thusexpressions (3.15)—(3.24) are cor-
rect with Q=J=1, N, =n, % ,(y)=0. The relation
between the time coordinates is

(4.1)

)
Y p) (4.2)
dt
and the original equation
UW. + > Wi=0 (4.3)
I=1
maps to
2Z,+ Y (Zf,. + %‘-(z")2 — ZBz‘) =0. (4.4)
i=1

Using time translation and dilation invariance for simplifica-
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tion, we obtain the following distinct possibilities:
(a) a>0, B=0,
A =1+t
(b) a<0, B=0,
Ry =(1-¢>)""
(C) a <O’ ﬁ = Oy
Ry =t Jlt] 20" =x5
(d) a=0, ﬂ #07
(1) =172,
(&) a=0, B#0,
) =1, 20" =x'+6(B/2)t%
f) a=p=0,
A =172
(8) a=p=0,
A3 =1, 2" =x.
In each case the y* are orthogonal separable coordinates
for the Hamilton—Jacobi equation

i (fo + %(2")2 - 215’21) =E

i=1

and

k=1 (02" =X,

h ()2 (%) = x5
Z'(y*) =x'+ (8"/20)p;

tZ'(y*) = x’;

(4.5)

n n1
R=3 [i(h ?) (z‘)z] ~L2 (4.6)
i=1 4 h
Basically, all case 1 R-separable systems originate from
separable systems for the zero-potential equation (4.5),
a = 3 =0. For each of the types (a)-(g) one need merely
determine which of the zero-potential separable systems re-
mains separable for an added linear or quadratic equation.
For example, if n = 2 there are four separable systems in
the zero-potential types (f) and (g): Cartesian, polar, para-
bolic, and elliptic. For types (a)—(c), Cartesian, polar, and
elliptic coordinates remain separable. Thus there are a total
of 2(4) +3(3) +2(2) =21 R-separable systems corre-
sponding to case 1. See Ref. 11, Chap. 2, for more details.
A classification of case 2 coordinates for E” with gen-
eral n has recently been worked out by Reid.'* Reid shows
that the Hamiltonian can always be written in the form

(3.10) where the functions 4 2(¢) can be selected from
[t+4)*+ B3],
[(t+4,)>—B}|7,

(t+4;)7%

(t+4,)"L

He has also worked out the case 1 separable systems for
general n.

h3@) =

V. THE TIME-DEPENDENT SCHRODINGER EQUATION

Our results extend rather easily to the time-dependent
Schrédinger (or heat) equation
224, + A9 +24 Y A/ (x0Y, + A V(x,0)¢ =0,
=1
(5.1)

where A, is the Laplace-Beltrami operator on the Rieman-
nian manifold V",

A, =1 S 9.(Vgg™d,.), g '=det(g").
\/§ Im=1
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In analogy with Sec. I, one writes
(x,t,m) = " Y(x,1),

where & satisfies the Laplace equation
A,,,d=0,
A =L "f 4. WK K74,)

n+1 \/E V= z 217

K '=det(K)y= —g~,

and (K Y), Z* are defined by (1.2). Equations (1.3)-(1.11)

continue to hold, but, from the theory of R-separation for

Laplace equations,*'® the R-separable solutions for (5.1)
take the form

(5.2)

n+1
P(x,t) =exp[ —AR(y) +S(V)] [] 0N, (5.3)

i=1

where R and S do not depend on the separation parameters.
Theorem 1 holds with only minor modifications. The analy-
sis of Secs. I-III for the Hamilton-Jacobi equation applies
without change for the second-derivative terms in Eq. (5.2).
The only complication is that the Laplace—-Beltrami opera-
tor also contains first-derivative terms and, if the coefficients
of these terms do not have the proper form, they could invali-
date the variable separation. We can use our freedom in
choosing S to partially offset this difficulty.

To be more specific we consider the case n, =n; =1
and adopt the notation of Eq. (3.3). Then (5.2) in the sep-
arable coordinates { y’,y“,,u} takes the form

1 _
20, +9,(nh)d, +-- 20, (hH, ‘3.)8

+ (2 FIOOH 2)49## =0, h=[[H., (54
1 a
where the conditions for R-separation of the second-deriva-

tive terms are as in (2.2). Now set & = 50"V ® in (5.4) to
obtain

1 —2
2<I>m, +¢9y,(2.$'+ Inh)®, + 7; 8y,,(hH,, aya)q>
+23 H S, 9, + (25«’,}1,— 2)q>,,ﬂ
a {

+ > H Mo + 8% +8, 0, In(hH 7))@ =0.

(Here S, = 3y,,S, ®, =Jd,Pbut ¥, H,; ? are merely sub-
scripted.) The coefficients of ®,, ®,, and P, respectively,
will be compatible with R-separation in the coordinates
{»°y',u} if and only if there exist functions g, ("), k; ("),
each depending on the variable y’ alone, such that

ayﬂy,,[2S+ln(hHa_2)] =0, I<a<b<n, (5.5a)

3,25+Imh] =3 g GIVH +g("), (55b)

c=1

S H; %S, —252) = Sk OOH 2+ k().
a=1 c=1
(5.5¢)

[Note that (5.5b) and (5.5¢) imply that the left-hand sides
of these expressions must be Stickel multipliers.] The case
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where the new time variable is ignorable (n, =0, n; =2)
leads to conditions (5.5a) and (5.5¢) with £, =0. However,
(5.5b) is omitted in this case.

For V"=S" we know from Theorem 3 that
3 ap In(hkH [ ?*) =0,a#b and d,h =0 so0 S=0 satisfies
the above equations. For V" = E ", Theorem 4 implies that

3 up In(hH %) =0, a#b, d.h=g (),

80 again S = O satisfies Egs. (5.5). Thus we have the follow-
ing.

Theorem 7: For any potential (4’ (x,t), V(x,t)) on the
spaces S"” or E" the time-dependent Hamilton-Jacobi
equation additively R-separates in a given coordinate system
ifand only if the corresponding time-dependent Schrédinger
equation multiplicatively R-separates in the same coordi-
nates.

In general, R-separation of the Schrodinger equation
implies R-separation of the Hamilton—Jacobi equation.
However, it is not difficult to find examples where Eq. (5.5)
cannot be satisfied, so the converse is false.

See Ref. 17 and references contained therein for applica-
tions of R-separation to time-dependent Schrodinger equa-
tions.

VL INTRINSIC CHARACTERIZATION OF THE
EQUATIONS

As was pointed out in Sec. I, the time-dependent Hamil-
ton—-Jacobi equation (1.1) can be considered as a special case
of the conformal Hamilton—Jacobi equation (1.2). This sug-
gests the interest in characterizing those pseudo-Rieman-
nian spaces V" * % for which the infinitesimal distance can be
written in the form

ds2=Q(2dtd7'+ S 8 dx“dx”), (6.1)

ab=1

where
atgab - a‘rgab = 0

Here Q is a nonzero function on ¥ * 2, We will employ the
root structure of conformal Killing tensors to provide this
characterization.

Let V'™ be a pseudo-Riemannian manifold with metric
ds® = 2G; dz' dz’ in local coordinates {z'}, and let V' ™ be its
associated 2m-dimensional symplectic manifold (with local
canonical coordinates {z',p;}). The Hamiltonian on ¥ ™ is
 =Z2G"%,p;,. A (conformal) Killing tensor Z (z,p) on
V'™ is a function on V'™, a polynomial in the p’s with z-
dependent coefficients, such that {#°, 2} = #57, where
Z is a function on ¥ ™ which is also a polynomial in the p’s
and {-,-} is the Poisson bracket. If 77 =0 then Z is a Killing
tensor. If & is linear in the p’s it is a conformal Killing
vector, a Killing vector if % =0.

Let & =34%(z)p,p;, A" =A%, be a second-order
Killing tensor on V'™ . A root p(z) of < is an analytic solu-
tion of the characteristic equation

det(47 —pG i) =0 (6.2)

and an eigenform w = ¢, dz* corresponding to p is a non-
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zero one-form such that

z (47 —pGY)g, =0, i=1,.,m.
i=1
We denote by W# the vector space (over the reals) genera-
ted by the eigenforms corresponding to p. Roots and eigen-
forms are defined independent of local coordinates.
Theorem 8: Necessary and sufficient conditions that the
infinitesimal distance ds’ = £G; dz’ dz’ on the pseudo-Rie-
mannian space ¥ * 2 can be expressed in the form

(6.3)

ds2=Q(2 dtdr + i 8o (X)dx® dx") (6.4)

ab=1
are the following.
(1) There is a second-order conformal Killing tensor
o =32A4%,p_; (A7=A4%) on V" *? with roots 0 (multi-
plicity n) and p#0 (multiplicity 2); dim W°=n,
dim W7 =2.
(2) There are two conformal Killing vectors

ga =E§;pzi!a=192y

on ¥"*+2 such that & = 2.%,.%,. Furthermore .%,, .%,
are in involution: {.% |, .%,} = 0.

(3) The first covariant derivatives of o/ vanish: 4 "j,k
=0, 1<, j,k<n + 2. Here the covariant derivatives are tak-
en with respect to the metric d§* = p~' ds”.

Proof: Suppose conditions (1)—(3) are satisfied. It fol-
lows immediately from conditions (1) and (3), and the prin-
cipal result of Eisenhart’s paper on symmetric second-order
tensor whose covariant derivatives are zero'® (p. 303), that
there is a coordinate system {y',y%x,..,.x"} on V" *2 with
respect to which

(6.5)

2
=3 @ 0IPP (6.6)
cd=1
2 n
H=3 ¢“0ppe+ Y r*(x)pap,s (6.6b)
ced=1 ab=1

(Although Eisenhart’s result is stated only for Riemannian
spaces, his proof remains valid for pseudo-Riemannian
spaces.) Condition (2) and (6.6a) imply that
Lo =2 150p,, a=1.2. Since obviously {«, p, 7}
={2.2,.%,,p5} = 0 and the .¥, are conformal Killing
vectors for pJ7, it follows that {.&,, p #} =0. Thus
z,,y“"’ax,,g ¢ = 0 and by the nondegeneracy of 7 we have
d,¢ e =0. It follows that there is a coordinate system
{t,;rx',..x"Yon V" *+2 suchthatt =t(y' y?), 7 = r(p'p?)
and

A =2p,p,, pH=2p.p,+ 3 VPP,

ab=1

Setting p = Q we obtain (6.4), where =, g,,¥" = &5.

Conversely, if the metric on ¥"+? can be expressed in
the form (6.4), it is straightforward to verify that conditions
(1)-(3) are satisfied where &, =p,, .Z,=p.. QED.

With this result one can use existing classifications of
separable coordinate systems for Hamilton-Jacobi equa-
tions 2g%p, p; = 0 to classify separable coordinates for the
time-dependent equation (1.1), e.g., Ref. 19.
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Maximum entropy summation of divergent perturbation series
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In this paper the principle of maximum entropy is used to predict the sum of a divergent
perturbation series from the first few expansion coeflicients. The perturbation expansion for
the ground-state energy E(g) of the octic oscillator defined by H = p*/2 4+ x?/2 + gx®is a
series of the form E(g) ~1+ 3(—-1)" ™ ' 4,g". This series is terribly divergent because for
large n the perturbation coefficients 4,, grow like (3r)!. This growth is so rapid that the
solution to the moment problem is not unique and ordinary Padé summation of the divergent
series fails. A completely different kind of procedure based on the principle of maximum
entropy for reconstructing the function £(g) from its perturbation coefficients is presented.

Very good numerical results are obtained.

I. INTRODUCTION

There are many processes in nature in which initial in-
formation is lost and becomes permanently irretrievable.
For example, the diffusion of heat, as described by the equa-
tion Ju/3t = oV’u, is a smoothing process which only pro-
ceeds forward in time: given u(¢,,x) we can predict #(7,,Xx)
(2,>t;), but given u(#,,x) we cannot postdict u(¢,,x). This
is because there are an infinite number of possible initial
conditions u(¢,,x) all of which evolve into u(¢,,x). Similar-
ly, there is no unique answer to the question of what is the
exact description of an object of which we have a blurred
photograph.

In cases such as these there is an interesting approach
one can take based on the principle of maximum entropy.
We ask a different kind of question which does have a unique
answer: what is the most /ikely initial temperature distribu-
tion of all those that could have evolved into u(#,,x)? In
actual image reconstruction problems the statistical distri-
bution is so sharply peaked that there is no question about
the solution to the unblurring problem.

In this paper we examine a similar kind of question in
the context of quantum-mechanical perturbation theory.
We consider a Stieltjes perturbation series which is so diver-
gent that there is no unique solution to the moment problem.
Thus there are an infinite number of possible Stieltjes func-
tions all of which have the same perturbation coefficients. As
a result, no ordinary summation procedure, such as Padé
summation, can give a unique result for the sum of the series.
That is, information about the original function has been
blurred or lost in the process of expanding it into its asymp-
totic expansion. To “sum” the series we use the principle of
maximum entropy to determine the most likely function
having the asymptotic series coefficients.

Il. THEORY

We illustrate this idea by investigating the Rayleigh—
Schrédinger series for the ground-state energy of the octic

* On leave from Department of Physics, University of Southern Mississip-
pi, Hattiesburg, Mississippi 39401.

®) Current address: Department of Physics, University of Crete, Iraklion,
Crete, Greece.

1016 J. Math. Phys. 28 (5), May 1987

0022-2488/87/051016-03$02.50

oscillator. The octic oscillator is defined by the Hamiltonian

H=p*/2 4+ x*/2 +gx®, (1)
where [x,p] = /. It is fairly easy to compute the Rayleigh—
Schrodinger perturbation expansion of the ground-state en-

ergy E(g) for this Hamiltonian. This expansion takes the
form of a power series in g:

E@~o+ 3 (D" 4g =0 @

n=1
The perturbation coefficients are obtained from a two-index
recursion formula’

2an,j =(j+ 1)(2j+ 1)Cn,j+1 +Cn~1,j—4

n—1

- E Cp,lcn—p»j’ (3)

p=1
A =

n n1 2

where C, ; satisfies the boundary conditions
CO,OZI’ Cn,j=0 (’1>1, _]<1)y
C.;=0 (j>2n+2).

The numerical values of the first few perturbation coeffi-
cients are given in Table L.
The growth of 4, for large » is very rapid*:

3 1 F(g) 3n+ 172
A~ T3+ 5) I (=

or
A, ~an~?B"(3n)!, (4)

where a and [ are constants.
The function E(g) is a generalized Stieltjes function.’

TABLE I. Values of the first six perturbation coefficients 4,, .

n A

n

6.562 5

2.109 843 75x 10°

3.137 100 585 937 5 10°
1.241 410 979 868 896 5 10'°
1.031 871 179 414 999 2 x 10'*
1.560 089 634 068 099 8 x 10'®

(o N S
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TABLE II. The diagonal and off-diagonal Padé sequences for g = 1, 1, and
1. Observe that these sequences are monotone but do not converge to E(g).
Clearly, Padé summation is not useful for the octic oscillator. The values of
E, ... (g) are taken from Ref. 5.

TABLEIV. E (g) for various values of g. Observe that the numerical accu-
racy is far better than the predictions of Padé theory in Table II, even
though the Padé predictions use three times as many perturbation coeffi-
cients.

N PY(y) PR Py, () PN PR () PN
1 052680 101530 0.52772 3.0727 0.52784 5.6445
2 053054 096591 0.53177 2.8224 0.53193 5.1429
3 053294 093986 0.53439 26896 0.53458 4.8768
4 053464 092342 053627 2.6056 0.53648 4.7082
5 053592 091196 0.53768 25467 053792  4.5902
6 053692 090339 0.53881F 2.5028 0.53906 4.5020
7 053774 0.89672 0.53971 24685 0.53999 4.4332
8 053843 089135 0.54049 24408 0.54077 4.3776
9 053901 0.88690 0.54115 24179 0.54143 4.3316

Epoee (1) =0.62051 E,.. (1) =0.74551 E,,. (1) =0.82069

Therefore, the perturbation coefficients 4, are all positive
and can be represented as moments of a non-negative func-
tion p(x):

4, =rp(x)x"—ldx (n=1.2,.). (5)
0

However, because the moments grow more rapidly than
(2n)!, the function p(x) is not uniquely determined by the
numbers 4, (see Ref. 4). Thus the Borel sum Ej (g) of the
series (2),

1 “dx p(x)

Ex(g)=—+¢g , (6)
1+gx

2 0
is not uniquely determined.

The rapid growth of 4, also interferes with Padé sum-
mation of the perturbation series (2). We know that for a
function of Stieltjes the diagonal Padé sequence P and the
off-diagonal Padé sequence Py, | (g) converge as N oo for
fixed g in the cut g plane. Moreover, forg >0, P (g) forms a
monotone decreasing sequence and Phr, ,(g) forms a
monotone increasing sequence with Py (g) > P4, | (g) for
all M and N. However, when 4, grows more rapidly than
(2n)! as n— « the Padé sequences are not guaranteed to
converge to the correct answer E(g). Indeed, Table Il shows
that the correct ground-state energy” lies well between the
limits of the diagonal and off-diagonal Padé sequences. Thus
Padé summation is an ineffective numerical tool for sum-
ming the divergent series (2).

Although the series in (2) really does not determine
p(x) uniquely, we can still try to find the most likely function

g E,(g) E,(g) Ei(g) E croce (8)
0.0001 0.500636  0.500638  0.500 638 0.500 64
0.001 0.505194  0.505357  0.505 391 0.505 43
0.01 0.524490 0527740  0.528 811 0.532 10
0.1 0.561572  0.576203  0.581994 0.620 51
0.5 0.592609  0.618986  0.630 054 0.745 51
1.0 0.606 451 0638322  0.651910 0.820 69

p(x) of all those non-negative functions that solve the mo-
ment problem (5). To do so we invoke the principle of maxi-
mum entropy® (maxent). That is, we seek the distribution
Dy (x) that maximizes the N th entropy functional’

Sy = _f d_x[pN )npy (x) —pN('x)]
0

N oo
+ Z ﬂ.,,[A,,—J- dxx""le(x)], N
n=1 0
where the A, are Lagrange multipliers that enforce the mo-
ment condition in (5) for n = 1,2,...,N.
Varying (7) with respect to 4,, and py(x) gives the

system of equations

A, =f dxx""'py(x) (n=12,.,N),
/0 (8)

N
Pn(x) = exp( — > Ax" 1) .
n=1

A multidimensional Newton’s method algorithm for solving
(8) is described in Ref. 7. Once py, (x) is known it is inserted
into the integral in (6) to give the maxent value of E, (g)
obtained from N moments. We have solved (8) for the case
N =2, 4, and 6. The values of A, are given in Table III and
the maxent predictions for E, (g) are given in Table IV.
Observe that the numerical results are quite good consider-
ing the small number of moments used. Thus the principle of
maximum entropy, which has been used in such diverse
areas as economics, photographic image reconstruction, and
time series analysis, also appears to be very effective at ex-
tracting maximal information about the sum of a very diver-
gent series from a small number of perturbation coefficients.

Our results for the energy suggest that the maximum
entropy sequence approximating the integral in (6) is con-

TABLEIIIL The values of the Lagrange multipliers for the N = 2, 4, and 6 maxent problems in (8). The input used to determine these values comes from the

perturbation coefficients given in Table I.

n A, forN=2 A, for N=4 A, forN=6

1 — 1134757 74 — 1.478 838 47 — 1.605 982 10

2 3.11041991x 1072 4.986297 771073 —5.97538700%x 1073
3 —1.111269 77x 10~¢ —2.081 86033 10~°
4 8.095 878 10 10~ "! 3.189 806 41 10~ '°
5 —1.83303926x 107"
6 3.466 001 9410~ '°

1017 J. Math. Phys., Vol. 28, No. 5, May 1987

Bender, Mead, and Papanicolaou 1017



vergent. On the other hand, little is known about the behav-
ior of the sequence p, (x) as N— o, even for less divergent
series for which the Carleman condition is satisfied.” A rig-
orous analysis of these questions should shed light on the
true potential of the method.

!A derivation of this recursion formula is given in C. M. Bender and T. T.
Wu, Phys. Rev. D 7, 1620 (1973).

2C. M. Bender and T. T. Wu, Phys. Rev. Lett. 27, 461 (1971).

3E(g) is a generalized Stieltjes function because the once-subtracted func-
tion F(g)=[E(g) — 1]/g is a function of Stieltjes. To show the F(g) is
Stieltjes we recall that (i) F(g) is analytic in the cut g plane [see J. J. Loef-
fel and A. Martin, CERN Report No. CERN-TH-1167, 1971 (unpub-
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lished) ]; (ii) E(g) ~cg"’® (|gl— o) in the cut g plane (this is known as
Symmanzik scaling); and (iii) the series in (2) is asymptotic to E(g) as
g—0in the cut g plane [see J. J. Loeffel, A. Martin, B. Simon, and A. S.
Wightman, Phys. Lett. B 30, 656 (1969)].

*The Carleman condition, 2|4, ]~ ?" = «, if satisfied, implies that the
moment problem has a unique solution. For the quartic oscillator 4,, ~n!
and for the sextic oscillator 4,, ~ (2n)!soin both of these cases the moment
problem does have a unique solution.

*Numerical values for E(g) are given in F. T. Hioe, D. MacMillen, and E.
W. Montroll, J. Math. Phys. 17, 1320 (1976).

*For a good review of the maximum entropy principle see E. T. Jaynes,
Proc. IEEE 70, 939 (1982) and The Maximum Entropy Formalism, edited
by R. D. Levine and M. Tribus (MIT, Cambridge, MA, 1979).

"For a full discussion of the maximum entropy principle applied to the sotu-
tion of moment problems for which the Carleman condition is satisfied see
L. R. Mead and N. Papanicolaou, J. Math. Phys. 25, 2404 (1984).
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Symmetries of static, spherically symmetric space-times
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In this paper it is shown that reduction from maximal to minimal static, spherical symmetry of
a space-time occurs in only one step reducing the number of independent Killing vector fields
from 10 to 4. Maximal symmetry corresponds only to the de Sitter, anti-de Sitter, and
Minkowski metrics, without reference to the Einstein field equations.

I. INTRODUCTION

By Noether’s theorem' the symmetries of a Lagrangian
imply the existence of conserved quantities. These symme-
tries have been used? to obtain the constants of motion for
the trajectories of freely falling particles in the field of a
gravitating source, e.g., in the Schwarzschild, Reissner—
Nordstrom, and Kerr—-Newmann geometries. In general rel-
ativity, symmetries are expressed in terms of Killing vector
fields (or Killing tensor fields, as in the case of the Kerr—
Newmann geometry?). The number of independent Killing
vector fields (K'V’s) is related to the number of generators of
the corresponding symmetry group. Rather than trying to
work out the symmetries of some particular space-time by
group theoretic methods, we work out all possible KV’s fora
static, spherically symmetric space-time by the process of
elimination.

A Killing vector field is a vector field k relative to which
the Lie derivative of the metric tensor g is zero, i.e.,

Zg=0. (1)

In a torsion-free space, in a coordinate basis, the Killing
equation reduces to*

gab,ckc+gack,cb +gbck,ca :O (a,b,c=0,...,3). (2)

The number of KV’s for the de Sitter, anti-de Sitter, and
Minkowski geometries are known to be maximal (10) and
for the Schwarzchild geometry to be minimal (4). A point
that needs to be determined is whether the gaps in the num-
ber of KV’s from the maximal to the minimal symmetry fora
static, spherically symmetric space-time can be filled or not.
In this paper we examine this point. We start by considering
the most general static, spherically symmetric line element,

dst=e" " dt? — er dr? — ¥ dB? — ¥ sin’ 0 dg?. (3)

The Killing equations are solved for all possible cases. It is
found that there can be either ten or four KV’s for the metric
given by Eq. (3), in general.

The authors have not found any work in recent litera-
ture exactly along the lines followed here. However, there
are two major lines followed that are fairly close to the ap-
proach taken in this paper. One follows the standard work of
Petrov,® where he considers Einstein spaces, and the other is
the work on exact solutions of Einstein’s field equations, giv-
en by Kramer, Stephani, MacCallum, and Herlt,® for exam-
ple.

# Also the Centre of Basic Science, UGC, Islamabad, Pakistan.

1019 J. Math. Phys. 28 (5), May 1987

0022-2488/87/051019-04%$02.50

Since we are not dealing with Einstein spaces only, the
work on Einstein spaces does not apply to our consider-
ations. We have replaced the requirement by the conditions
of spherical symmetry and staticity. Thus ours is, in many
ways, a more restrictive assumption. Nevertheless, there are
many examples of spherically symmetric, static metrics that
do not belong to Einstein spaces.

Of course, all cases considered by us are exact solutions
of some Einstein field equations. However, the procedure
generally adopted is to deal with given Einstein equations
and determine the symmetry of their exact solutions. We
have reversed the order to deal with a given symmetry and
determine, where possible, the stress-energy tensor for such
asymmetry. This procedure may seem to provide a pointless
approach at first sight. However, our point of view was to
look only at the symmetries obtaining in a space-time, pro-
vided that it is static and spherically symmetric.

Itisinstructive to put the work in group theoretic terms.
What we show in our paper is that the maximal symmetry
group of a spherically symmetric static four-dimensional
space-time is one of the three: (a) SO(1,4), (b) SO(2,3), or
(c) SO(1,3) ® R*. Here the R* give the four space-time
translations. Thus the groups are either the de Sitter, anti-de
Sitter, or Poincaré groups. The minimal allowed symmetry
group is SO(3) ® R, where the R gives time translation and
SO(3) the spatial rotations only. The remarkable result is
that there does not exist any group properly containing the
minimal group and properly contained in one of the minimal
groups.

In the next section we explain the procedure adopted for
finding KV’s. This procedure is applied, in full, to one case in
Sec. III while mentioning the results for all other cases with-
out giving details. Finally, we state our main result in the
form of a theorem in the concluding section.

Il. PROCEDURE ADOPTED

To find the KV’s for the metric given by Eq. (3) we
write the complete set of first-order coupled partial differen-
tial equations obtained by inserting Eq. (3) into Eq. (2).
Now, by differentiating these equations, we can obtain iden-
tities between pairs of equations, leading to first- or second-
order partial differential equations that are decoupled. We
then solve these differential equations by using the separa-
tion of variables. The separation and integration constants

© 1987 American institute of Physics 1019



are then allowed to take all possible values, i.e., positive,
zero, or negative. In some cases the positivity of e*'” and
€ imposes a constraint on the choice of the integration
constant.

Having obtained some partial solution, the expressions
are inserted back into the original set of ten Killing equa-
tions. Consistency places further constraints on the integra-
tion and separation constants. This procedure is used itera-
tively till the general solution to the coupled differential
equations is obtained. In general the solution will depend on
the choice of v(r) and A(r). However, for the solution of
some of the equations to exist, these functions will have to
satisfy some differential equations. In these cases the differ-
ential equations are solved to yield the metric coefficients for
zero—zero and one—one components. It should be stressed
that the Einstein field equations have not been appealed to.

1ll. APPLICATION OF THE PROCEDURE
The Killing equations for the metric given by Eq. (3)

are
v(nk'+2k$ =0, (4)
ek ~ Sk =0, (5)
"k —rki =0, (6)
ek —r’sin’ 6k =0, (7
A'(Nk'+2k] =0, (8)
Ok + k2 =0, (9)
SOkl + P sin? k3 =0, (10)
k'+rk?% =0, (11)
k% +sin*6 k% =0, (12)
k'+rcotOk?+rk% =0, (13)

where a prime denotes differentiation with respect to 7.
Equation (8) is a differential equation involving k and its
derivative with respect to r. Thus it can be integrated with
respect to r to yield

k'=B(1,0,¢)e "7 (14)

where B(t,0,4) is the “constant” of integration. Now there
are two cases: (I) B #0, and (II) B = 0. We first consider
case (I).

Differentiating Eqs. (9) and (11) with respect to @and »
and comparing gives (as B #0)

B(1,0,0)40/B(1,0,6) = — (1 + A" (1) /2)e *" = —q,
(15)

where Byy = 3 °B /90 2. Since theleft-hand side of Eq. (15) is

not a function of r whereas the right-hand side is, « is a
separation constant. Now there are three possibilities: (1)
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a>0, (2) a<0,or (3) a = 0. First consider case (1). Here
Eq. (15) can be easily solved to give

B(1,6,6) = B,(t,¢) cosJa® + B,(t,¢) sinJab, (16)

e " =(a+B"), (17)
where B,(2,8), B,(t,8), and [ are “constants” of integra-
tion. Again there are three possible cases: (a) f<O0, (b)
B >0, or (¢c) 8 =0. Consider case (a) first.

Differentiating Eqs. (4) and (5) with respect to 7 and ¢,

respectively, and comparing, using Egs. (14), (16), and
(17), gives

B,(1,4),, cosal + B,(t,4),, sinja b

B, (t,4) cos Ja b + B,(1,¢) sin a8
={v'(a+B7) +Bvrt=y, (18)

where ¥ is the separation constant. Once again there are
three possibilities: (i) ¥ >0, (i) ¥ <0, or (ili) ¥y =0. We
first consider case (i). Equations ( 18) can be solved for both
sides to yield

B (1,¢) = B,,($) coshyyt + B,,(¢) sinh/y¢, (19)
B,(t,6) = B,,(¢) cosh \yt + B,,($) sinh/y1,
e’V = — (y/ap)(a +pr)= — (y/aBle *. (20)

Notice from Eq. (20) that for e”” to be positive ¥ and f3
should have opposite signs and « be nonzero. Using the val-
ueofk 'in Eq. (11) with Egs. (19) and (20) and integrating
with respect to 6 gives

k*= — [(a+ B /Jar] [{B,,(¢)coshyyt
+ B,,(¢)sinhyy? }sinyad

—{B,,(¢)coshyyt + B,,(#)sinhyyt tcos yab |
+4,(,r8). (21)

Differentiating this equation with respect to r and compar-
ing with Eq. (9) itis easily seen that 4 is a function of t and ¢
only. Integrating 6 in Eq. (6) using Eq. (21), yields

k® = [Br/ty(a +Br))] 2 [{B, (#)sinh71

+ B,2(¢)cosh\/?t }cos\/EG

+ {B,1(#)sinhyyt + B,,($)coshyFt }sinyad |

— aff6A\(1,8),/y(a + Br*) + A, (1,r,8). (22)
Differentiating this equation with respect to » and compar-
ing with Eq. (5) it is found that 4, and 4, are functions of ¢
only and of r and ¢, respectively. Equation (10) can be inte-

grated with respect to 7. Using k£ ' and Egs. (19) and (20),
one obtains
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k3= [(a+pBr)"*/arsin?6]1[{B,,($), coshyyt
+ By,($), sinhyyr }cos/ad
+{Bo1(§)4 cosh 7t + Byy(4), sinhy7t Jsinya6 ]
+ A;(1,6,0). (23)

Using Eqs. (22) and (23) in Eq. (7) it is easily checked that
A, and 4, are functions of £ only and of @ and ¢, respectively.
To check consistency use Egs. (21) and (23) in Eq. (12),
which implies that it is satisfied only if

—2[(a+Br)/ar]'?[(B,,($), cosh |yt
+ By,(4), sinhyy?)(Ja sin 8 sin a8

+ cos 8 cosJa8) — (B,,(¢), coshyyt

+ By, (#), sinhyyt)

X (Va sin 6 cos a8 — cos 0 sinya ) ]

+ [43(0,4)4 sin* 6 + A4,(4),]sin6=0.

This equation is satisfied if the coefficients of # and sin & are
separately zero. Thus

(B11(#), coshyyt + B,,($), sinh/yt)(Ja sin 8 sinJad + cos 8 cos{ad)

— (B (8), coshyyt + By, (), sinhyyt)(a sin 6 cosyad — cos 6 sinjad) =0,
|

A4;(0,6) =cot 04,(4), + 4,(¢). (25)

There are two possibilities for Eq. (24) to be satisfied:
(»)a =1, (T)a#1. In the first case we have the de Sitter
metricwithf = — 1/R 2. From Eq. (24) wesee that B,, and
B,, are constants, say C, and C,, respectively. Differentiat-
ing and using Eq. (23) in Eq. (13), remembering Eq. (25),
we obtain

B,, =C;cos ¢ + C, sin ¢,
B, =C5cos ¢ + Cgsin g,
A, =C,cos ¢ + Cysin ¢,
A, = C,.

Now from Eq. (5) it can be easily checked that 4, is an
integration constant, say C,,. Thus we obtain ten K'V’s for
the de Sitter metric:

k®=[r/R?*/(y(1 —*/R*)"*| [ (C,sint/rt 4+ C,cosh\y1)
Xcos 8 + {(C3 cos ¢ + C, sin ¢)sinhy/y ¢
+ (C, cos ¢ + Cq sin #)coshyrt }sin 6 | + C,,
k'=(1—7r/R*»'V2[(C, cosh [yt + C, sinh {yt)cos 8
+ {(C3 cos ¢ + C, sin ¢)coshy/yt
+ (Cs cos¢+C6sin¢)sinhﬁf}sin0], 27
k*= —[(1—=7r/R®Y?/r1[(C, coshyt + C, sinh {y?)
x sin @ — 1(C, cos ¢C, sin ¢)coshyyt + (Cs cos ¢

+ C,sin ¢)sinhyyt }eos 6 ] + (Cy cos 6 + Csin ¢),
k3=[(1=rP/R*"/rsin@1[{( — C,sind + C,cos ¢)

X coshyyt + ( — Cy sin ¢ + C, cos ¢)sinhy/y1 ]

+ cot ( — Cygsin ¢ + Cycos @) + C,.

(26)

Anti-de Sitter metric: Another possibility is the case
(1.b. ii.*). Following the same procedure as in the first case
(replacing ¥ by —  and B by 1/R ?), we can obtain the
independent Killing vector fields for the anti-de Sitter met-
ric. These Killing vector fields are again 10, with
sinhyy¢(coshy/y?) replaced by sinyy¢ (cosyyt) in Egs.
(27).
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(24)

The Minkowski metricc Now consider the case
(1.C.iii.x). Equation (18) yields

v(r) a + br

e (28)
Now there are two possibilities: (3)b =0, (#)b =0. The
first case gives the Minkowski metric (modulo a constant
zero—zero metric coefficient which could be taken to be uni-
ty). Again we have ten KV’s:

=¢

k®=r[C,cos @ + C,cos(¢ + C;)sin8] + C,,
k'=1t[C,cos§— C,cos(¢+ C;)sin8] + Cscos 0

(29a)

+ Cg cos (¢ + C,)sin 6, (29b)
k?= — (t/r)[C,sinh § — C, cos(¢ + C;)cos 0 ]

— (1/r)[Cs sin @ — Cg cos(¢ + C;)cos 6]

+ Cgcos(d + Cy), (29¢)

k?*= — (1/rsin 0)[¢C, sin(¢ + C;)

+ Cg sin(¢ + C;) — Cgsin(¢ + Cy)cot 8] + Cyp.
(294d)

We now consider the case (1) in which it is easy to see
the reduction of KV’s from 10to 4 only. In case (1) Eq. (24)
is satisfied if B, |, B,,, B,,, and B,, are all constants. To check
consistancy we use Eqgs. (14), (16), (17), and (21) in Eq.
(13). It turns out that all the above constants are identically
zero. In this case 4, and A4, are given by Eq. (26). The KV’s
are

k°=C,

k'=0,

k?=C,cos ¢ + C,sin g,

k*=cot0( — C,sing + C, cos ) + C,.

(30)

Notice that these are the usual KV’s for the Schwarzschild
metric. Here, however, the metric tensor has one-one and
zero—zero components given by Egs. (17) and (20).

We now write e*” for those remaining subcases of case I
that are permissible within the requirement of positivity of
e’ and *:
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Cases e’

(laiii) a+ (b/yB )sinh~'JB/ar,
(Lbiii) a+ (b/JB )sinh~B/ar,
(l.c.i) —2y/av”,

(lcil)  2p/av”,

(lciii#) a + br,

(2.b.ii) — (v/aB) (a + Br),
(2.biii) a4+ (b/yB )sinh~YB/ar,
(3.b.ii) —2y/Br(v'r)’,

(3.biii)  ar.

There are only four KV’s in each of the above cases. These
vector fields are given by Egs. (30).
Now consider case (II). In this case Eq. (14) gives
k'=0.
Using this value of k in Eqgs. (4) and (5) it is easily seen that
k °is a function of 6 and ¢ only. Also Egs. (9) and (11) imply
that k ? can depend only on 7 and ¢. Differentiating Eq. (7)
with respect to ¢ we obtain
k3=A4,(0,¢) + A4,(6,0)t. (31
Differentiating Eq. (6) with respect to 8 and solving gives
k®=4;(8) + A45($)6. (32)

Also Eq. (6) can be differentiated first with respect to ¢ and
then integrated with respect to ¢ to yield

k?=As5(¢) + Ag(P)1. (33)
Solving Eq. (12) with Egs. (31) and (33) we obtain
Al = Ccot 9A5(¢)¢ +A7(¢)9 (34)

A, =cot 0A45(9) 4 + As(d).

For consistency using values of k ° and & ?in Eq. (6) it turns
out that

A (P)e" " = rPA(P). (35)

Equation (35) can be separated in r and ¢ with the separa-
tion constant ¥ and solved to yield

e’ = 7”'2’ Ag($) = yA4(¢). (36)

Notice that the separation constant can be greater than zero
here [as ¥<0 in Eq. (36) is not permissible]. Using the
above results in Eq. (13) we get

Ay =C,cos ¢ + C, sin @,

As=C,cos ¢ + C,sin ¢,

A, =C5, Agz=C,.

To check consistency from Eq. (16) it is easy to see that Cj,
C,, and C are zero and A4, is a constant. Using the values
from Eqgs. (34) and (37) in Egs. (31)-(33) we obtain the
same four KV’s given by Eq. (30).

Notice that in this case since 4, = 0, Eq. (35) implies
that A4 is zero. Thus " or e*'” in this case have no con-
straints. This leads to the fact that while maintaining spheri-
cal symmetry and staticity for arbitrary v(7) and A(r), the
form of KV’s is given by Egs. (30).

(37)
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IV. SUMMARY AND CONCLUSION

It is found that in the most general static, spherically
symmetric space-time there can either be fen or four KV’s
without reference to the Einstein field equations. The first
case includes the de Sitter (positive cosmological constant),
anti-de Sitter (negative cosmological constant), and Min-
kowski metrics with the requirement that & =1 in these
cases. In the case @ # 1, Eq. (24) is satisfied if B,, to B,, are
zero. The requirement reduces the number of KV’s from 10
to 4, not allowing any number in between.

The separation constants in the above cases have been
allowed to take all possible values. It turns out that in each
case different metrics are obtained. All these metrics admit
of only four KV’s, given by Egs. (30).

In the case II (B = 0) there are four KV’s given by Eqgs.
(30). However, the metric has no constraints on the func-
tional form of e*" and ¢*‘”. Hence the other cases having
four KV’s can be incorporated into the case II. The con-
straints would now have to be obtained from the Einstein
field equations. Thus we have the following.

Theorem: (i) Static, spherically symmetric space-times
admit either ten or four KV’s.

(ii) In the case of four K'V’s there is no restriction on the
metric but in the case of ten KV’s the metric is either de
Sitter, anti-de Sitter, or Minkowski.

Notice that the maximal symmetry corresponds to the
Lie algebra of the group O(1,4) or the Poincaré group. The
minimal symmetry corresponds to one translation (along
the time axis) and three “‘rotational” parameters, i.e., O(3)

® R(1). It would be interesting to look at the reduction of
symmetries in more general cases, e.g., without assuming
that the metric is static, or taking static and axially symmet-
ric metrics, etc. In these cases the present procedure would
be too complicated and group theoretic methods would have
to be used.
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Expressions are found for homogeneous and inhomogeneous propagators for vector fields of
arbitrary mass in anti-de Sitter space-time using a generalization of Stueckelberg’s Lagrangian
for a massive vector field. The massless case (quantum electrodynamics) is also considered by

taking the appropriate zero-mass limit.

I. INTRODUCTION

Recently there has been great interest in field theory in
anti-de Sitter (ADS) space-time because this space occurs as
a natural space-time background in extended supergravity
and Kaluza—Klein theories.! Another place of interest is in
models for hadrons in which confinement has been built in
by means of an ADS bag in which quarks and gluons move
along geodesics.? In order to take quantum effects into ac-
count, like gluon exchange, one needs the use of propagators.

Early work on propagators has been done by Fronsdal®
for homogeneous ADS scalar propagators and Fronsdal and
Haugen* for spinor fields. The massless case for arbitrary
spin has been studied by Fronsdal® and Fang and Fronsdal.®
Anti-de Sitter quantum electrodynamics (QED) was re-
cently developed by Binegar et al.” for a particular gauge
fixing choice ¢ = 4, and by Gazeau® for the general case in
the framework of the representation theory of the ADS
SO(3,2) symmetry group. Vector propagators in maximally
symmetric spaces have recently been studied by Allen and
Jacobson.®

In previous papers, expressions for SO(3,2) symmetric
massive scalar and spinor propagators, homogeneous as well
as inhomogeneous, were found using configuration space
methods.!®!! The same method will be applied in this article.

Anti-de Sitter space-time is not simply connected; there-
fore we need the introduction of a covering space.>'® Fur-
thermore, implicit boundary conditions at infinity have to be
imposed in order to get a well-posed Cauchy problem and to
make the propagators unique.'®'? This can be done by re-
quiring the propagators to approach zero “sufficiently” fast
when a certain invariant quantity approaches minus infin-
ity.10

In Sec. II we give a review of the Stueckelberg method
for obtaining massive vector propagators in Minkowski
space. In the massless limit one obtains QED with Gupta—
Bleuler quantization. In Sec. III we obtain the appropriate
vector field equations with arbitrary mass in ADS space-
time. In Sec. IV we construct homogeneous and inhomogen-
eous vector propagators and in Sec. V we discuss the nor-
malization of the propagators using the quantum conditions.
In Sec. VI we discuss the massless case (QED with Gupta—
Bleuler quantization) and compare our results with those
obtained by Gazeau.®
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Il. MASSIVE VECTOR FIELDS IN MINKOWSKI SPACE

Consider Stueckelberg’s Lagrangian for a massive vec-

tor field in  Minkowski space with metric
7, = diag(l,—1,— 1, — 1)1

L= —1F, F*"+ip’4,4% —1c(8,4%)°, (2.1)
with field equations (for ¢#0)

(O +p2)Ad* — (1 —¢)d*d,4* =0 (2.2)
and

[0 +u*/c)d, 4% =0. (2.3)
The Feynman propagator in k space is given by

L —k k,/u? k k, /u?
Gv(k,,u2)=—i{77“ Dt it ]
# k*—u*+ie  k*>—p*/c+ie
(2.4)

where the first part is transverse and the second part longitu-
dinal (pure gauge). The massless limit is given by

U ( 1—c\ kK,
k2 + ie ¢ J(k?+ie)?

G, (k)= —i{ ], (2.5)

or in x space,
1 1) Nuv
G =— i1 4+ = }—
v () 4721'{( + ¢ /2(x* —ie)
1 X, X
1__)_!_‘_v_]_
+( ¢/ {x*—ie)?

After quantization the commutator of two fields reads

(2.6)

[4,(x),4,(0)] =iD,, (x), (2.7)
where
D, (x) =D,tfv(x) +le§5(x), (2.8)

with D}, (x) and D 27¥(x) given by

4
d k e—ik-x

D ZiJ )’

k,k
Xe(ko)[mw— ;2”]6(%—#2) (2.9)

and
a . k k.,
D‘°:8(x)=if Ak g iore(ky) L2 8(k*—m?),
[ad (277_)3 #
(2.10)
®© 1987 American Institute of Physics 1023



with m? = u?/c. This homogeneous propagator is normal-

In terms of the conjugate momenta

ized, such that the quantum conditions are fulfilled, to FR%
[4,(x).4,(0)]] _ ;9D () T3 (212)
" v =0 ot (=0 and fields, we obtain, of course,
1-— _
”7,uv(1 + 77,,0)53(96) [4, (x),m,(0)]], =0 =z'17W63(x). (2.13)
2.11) Performing the integrals in (2.9) and (2.10) we obtain, with
1
A=x,x", A_.=A—liet —€/4, xo=1t—1i€/2, (2.14)
D, (x) =L m [,7[ 1 [Jl(u\/ﬂ_) _ 1 Lmi2) ]
27 A_. A_. uA ¢ mii
CAC DRSS [Jz(uff) —iJz<m\m—)]ln( —/1_6)]
2 24, c

2
+x,x,
g [(LE)Z A

1 [/‘Js(#\/—[)
v ¢ Vi

Py

— €

Ji(A) T _LM_%—JZ(m\/T)]

#E)”- (2.15)

In the massless limit (QED with Gupta—Bleuler quantization), we obtain

X, X,

AR

I

We see that the gauge fixing choice ¢ = 1 (Feynman gauge) gives the simplest expressions for (2.15):

1 1 /‘Jl(,u\//{_)
217-2 m[’?;w[/l_e 2‘//1_ n(

where the last term vanishes for the massless case.

D, (x)

. MASSIVE VECTOR FIELDS IN ANTI-DE SITTER
SPACE

Consider a massive vector field 4, in a curved space-
time with coordinates x* (u = 1,...,4) and metric g,,, with
signature ( +, —, —, — ). The Lagrangian is"*

Ly=—IN—gF F*+iu* —gd,4*, (3.1
where g = det g,,,. When 0 the field equations are

3, —gF*)+u*y —g4”=0. (3.2)

Taking the divergence, we obtain the generalized Lorentz
condition

3,( —gd*)y= —ga*, =0,
where the semicolon denotes the covariant derivative:
A%, =47, +T7,4°", (3.4)
with I'”,, the affine connection. Now consider a five-dimen-
sional space with coordinates £ (M = 1,...,5) and metric
(3.5)

Anti-de Sitter space can be visualized as (the covering space
of) the hyperboloid

EmEM= —E+ET+EI=R"=

(3.3)

Naw =diag( — 1, — 1, - 1,1,1).

1/a = const > 0.
(3.6)
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0]}

(2.17)
|
The time variable ¢ is introduced by
£, =VR? 4 E%int/R, & =VR*+E%cost/R, (3.7)

and is many valued in £ space.

In the following we restrict ourselves to the first sheet
only. We introduce a five-dimensional vector field B,,,
which satisfies the transversality condition (no component
perpendicular to the hyperboloid)

£YBy =0. (3.8)
The Lagrangian is given by’

L= —1GuyGMN 4 1(m + 1) (m +2)B, BM.

(3.9)

Here, G,y is defined by

GMN = (éM —aéy)By — (éN —aby)By, (3.10)
with

Opg =00y — Al £V dy (3.11)

the tangential derivative. The equation of motion which fol-
lows from (3.9) is’

(M2 +2)B,, +a ' 3y OnB" — 2£,, IBY
=(m+1)(m+2)B,. (3.12)
H. Janssen and C. Dullemond 1024



This is equivalent to (3.2) when

By 2%/{# (3.13)
and g, is the ADS metric. Here,

M? = My MY, (3.14)
with

My =i(&y In — En Ing). (3.15)

Taking the divergence of Eq. (3.12) we obtain for

m# —~1,—2,
BB = (3.16)
which is equivalent to (3.3). Then Eq. (3.12) reduces to
[M?—m(m+3)]1By = (3.17)

which is the equation for a scalar field.
Now consider the Lagrangian which is the generaliza-
tion of Stueckelberg’s Lagrangian (2.1) for ADS space:

Fp= —1GunG™ +4(m + 1)(m +2)B, BM
— (9 B™). (3.18)
When m = — 1, — 2, we obtain the Lagrangian for ADS

QED with a gauge fixing term. The field equation for B,,
now becomes

(M2 —m(m+3)]By — (c— a3, dyB"

— 26, BN =0, (3.19)
Taking the divergence we obtain the scalar equation
M2~ [(m+ 1) (m +2)1/c}dyB*=0,  (3.20)

which is the analog of (2.3).

IV.CONSTRUCTION OF PROPAGATORS IN ADS SPACE

Take as the reference point £ on the hypersurface
Eom€ ¥ = R 2. The propagator matrix element G, (£,6,) is
an invariant function of

A=1—(ay)’=1~-272, (4.1)
where
VzgglgM-

The tensor structure is given by two basic transverse (with
respect to £ and &) tensors. Introduce the transverse projec-
tor

Pyy =Tun — by

(i.e., Oy = Ppy 3" ). The two basic tensors are®

(4.2)

MRPO N"‘PM ON

= Nyn — b ybn — tbomon + @26y Eon

4.3)
and
& PosnEo Pras = & Ponbo Py
= (&n — 2Eon) (Eomr — ZE)- (4.4)
Writing
Gy (2) = Py Poy f(2) + @b Popdo Preg(z)  (4.5)
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and substituting this into the homogeneous equation

[M2—m(m+3)]1Gyy — (¢~ Da™ ' Jp 9°Gpy
—28m éPGPN =0,

we obtain for fand g the following coupled equations:

[M2— (m+1)(m+2)+4c)f~ (1 —c)zf”

(4.6)

+(=345)zg+ (1 —c)(1~2")g =0 4.7)
and
(M2~ (m+1)(m+2)+3+5clg
+(=3+70)z8 + (1—c)(1—=2%)g"
+(—=345c) —(l—¢)zf" =0, (4.8)

where a prime denotes a derivative with respect to z and

d? d
M?= — (1 -2) "= 4+ 42— 4.9
( Z)dzz+ o (4.9)
First consider solutions which are transverse:
IMG ' =0; (4.10)
then (4.7) and (4.8) reduce to
(M>—m(m+3)+2]f+22g=0, (4.11)
(M?—m(m+3)+6lg+4zg +2f" =0, (4.12)
with two independent solutions for z%#1:
fi= 1 {F(~m+2’m+3 _l_zz)
m+3 2 2 2
m m+3 1 2)}
2Q)F| ——, — ,  (4.13)
+ (m+2) ( 2 5
+ 4 +5 3
=2{(2~ F(~’” , ,——22)
& z{( ) 2 2 2
m+2 m+5 3 2)]
DF( — R
+ (m+2) ( 5 5 5 2
(4.14)
m+3 m+4 3 2)
=z{(l—=m)F| — , P =5
f2 z[( ) ( 2 2 2"
m+1 m+4 3 2)}
- 2F - [} Sy )
m(m+2) ( 5 > 2,2
(4.15)
=[(1—m)F(—m+3,m+4;~1—;22)
2 2 2
m+l m+4 1 2)}
DF| — ———, 1 1
+ (m+2) ( 3 > >
(4.16)
where F(a,b,c;x) is a hypergeometric function. For
m= — 1, — 2, they reduce for 4 %0 to
1 222 =1/27
{1 /(1 =z2)2=1/ ’ 417
g,=4z/(l—z =4\) 1 —A /A3
and
3z —
fz'“ z 22_\1 [ ]
(=2 (4.18)
_34+62—2" _8—41-4’ '
& (1__22)3 FE ’

which correspond in the flat space limit -0 to the pure
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gauge propagator then G(z) has to satisfy

2 —

_ kk, hm ﬂngv(k,ﬂz)’ k220, (4.19) .{M [(m.+ 1).(m + 2)]/c.‘}GFz) 0. (4..22)
k? Taking appropriate linear combinations of the solutions
where (4.13)—-(4.16), we can obtain solutions which converge to
o 2 . N 2 ) zero when A - — co. Because m and — (m + 3) are inter-
Dy (k™) = i[ (m — kKo, /pt )/ (k= —=p7]. (4.20) changeable, we can limit ourselves to m > — 3 and use the
Now consider longitudinal solutions of the form solutions (4.25) and (4.26) when we demand that the func-
G — g9 O G tion approaches zero faster than ( —A) /% The case
s = @7 Oy Goy G(2) m = — 3 will not be considered. For m < 0 we find, using the

=Py PyyG'(2) + @l Pon&o Py G " (2); (4.21) same notation (we limit ourselves to the first sheet),

|

2 2
m+2 m—4 1 _,)}
—nF( - - om0 4.23
+ )< 2 2 "7y (4.23)
g.=—3(—/1)“""’/2{((m+1)(m+2)+12)F(_’"“,_’"+3;_m—i;,rl)
3 2 2 2
m+3 m—>5 1 _)]
—(m—1)(m—-2)F| — = j—m—— A7, 4.24
(m = 1) (m )( 2 2 T (4.24)

and, form> — 3,

f2=(—ﬂ)_""+3’/2[3mF(m;_3 el i+ /1—‘)+(m+4)F(m+5 ,——’”2‘1 ;m+i;,1—*)], (4.25)

2 2 2
2 Z%( —) ~(m+4>/2{((m +D(m+2)+ 12)F(m +4 % m +-§—;/I *')
— m+ ) om 4 HF(IEE Ly 2 ) (4.26)

The longitudinal solutions with the appropriate convergence properties are obtained from

G,:(—/l)'”'/ZF(——m +2,——”’—;—m'_-1—;/1~') (4.27)

2 2 2

and

G2=(—-/l)“(""+3)/2F(_’Zl_+_1,m +3;m'+i;/1_'), (4.28)

2 2 2

where m’ is related to m and ¢ through

mim +3)=(m+D(m+2)/c (4.29)

We show that the transverse solutions are not normalizable in the sense of condition (5.6) because they contain A ~?and A —3
singularities. Expanding the solutions around 4 = 0 we find for both solutions,

4 mihemt2)
:A —
FimA) {12 ) 8

(m+1><m+2>(m+3)F( =, ’";” ;2;/1)1n(—/1>

—1—92—(m— 1ym(m + 1)(m+2)(m+3)(m+4)/1F( m;?‘ mt3 ;4;/1)1n( —A) +a(m,/1)],

2
(4.30)
16
gmA) =4[22+ 20(m + D +2) — 4+ mOm 4 D[+ D m +2) il
1
— 25 [+ D 0n+2) + 120m(m + 1)(m+2)(m+3)F<— nel mizy, )m( )
—{»b(m,/l)], (4.31)

where A is an arbitrary constant and a(m,1) and b(m,A) are regular functions of A in the domain {4 | < 1, which are different
for the two solutions. But we see that the singularity structure is the same for both solutions. For the longitudinal solutions we
find
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G'(z) = _2,/1_/1_:7G=D{_,2__M+_

A? 21

,3;4)111( —4) +d(m',/1)],
8 m'—1)(m' +4)

116 m'(m' + 1) (m' +2) (m' + 3)

(4.32)

(m'— ym'(m' 4+ 3)(m’ +4)

+2 m+5
X\/l—/lF(—m Jmto.
2
dG
G" 4(1—A ¢_2%_p _
(2) =4( )aw QA [ e

+9—16(m’—2)m’(m'+ ) (m' +2)(m' +3)(m' +5)(1 —/1)F(—

xln(—/l)+1L6m'(m'+1)(m'+2)(m'+3)F( L2

A2 - 84
m+4 m+7
2 7 2

44 )

m +2 m+5

,3,/1)1n( —A) +e(m',/1)} , (4.33)

where d(m’,A) and e(m’,A) are regular functions of A in the domain |4 | < 1, which are different for both solutions.
In order to obtain normalizable solutions in the sense of Sec. V we take appropriate combinations of transverse and
longitudinal solutions. With arbitrary gauge fixing parameter ¢, we obtain

Gyn(A) = 7

___192 (m—1ym(m +3)(m + 4)/1F(

+é(m'+1)(m'+2)\/1—”(—

+ flmeA) | + a& Ponéo Py [( — _>__ +— 2(

——418—m(m+3)((m Fh(m+2) + 12)F(—

[M ON[ (1"‘-‘1—)i %m(m+3)F

2

m m+3 )
, 2.4 JIn(— A
ST, A JIn( —A4)

———(m—2)(m—l)m(m+3)(m+4)(m+5)iF( m2+3 , m + 6 ;5;1)

2304

><1n(—1>+ﬁ(m'—2)<m'+1)<m'+2)(m'+5>(1—/1>F(— ,

m+2 m+5

+L(m'+1)(m'+2)F<— )
8¢

2 2

where f(m,c,A) and g(m,c,A) are regular functions of A in
the domain |4 | < 1.

To obtain the Feynman propagator G &, (&,t;€,1,)
from Eq.(4.34) we make the following replacement (we re-
strict ourselves to the first sheet, i.e., n = 0; see Ref. 10):

A—A — e, (4.35)

but leave £ the same. In order to normalize this propaga-
tor, we want it to satisfy Eq. (4.6), where the right-hand side
is replaced by the inhomogeneous term

— RPoyn 8 (€ — £,)8(1 — 1,).

For the normalization constant F we find by direct substitu-
tion of the solution in the inhomogeneous equation

F= —1/87%R? (4.37)

[cf. Eq. (2.6) ]. Here we made use of representations for the
&* function such as

26
li = §*(x"),
o2 77'2 (A — ze)3 (%)

where A = x, x*.

(4.36)

(4.38)
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m+2 m+S5 )
, 44 JIn( — A
5 5 A JIn( )
> 44 )ln( A
1
) m+1)(m+2)(1——c;>
m+l m+4 3,1)1(_/1)
2
m 4 m+7 )
4.4 JIn( — A
5 5 ;44 JIn( )
;34 >ln( —A) +g(m,c,/1)” , (4.34)

[

V. NORMALIZATION OF THE SOLUTIONS
Consider the Lagrangian (3.1) with a gauge fixing term
FLor= — (/DN —g(4",)> (5.1)

This total Lagrangian is equivalent to (3.18). Define the
conjugate momenta

P — — FPO pOAu )
T B(HOAP v - v —g8”(

This prescription is independent of the metric. The quantum
conditions are (independent of the metric)

(5.2)

[7(x,0),4,(F.0] = — 5,8 (x — ), (5.3)
from which we obtain
[7,(x,0.4,.F)] = —ig,w53()_€ —-y). (3.4)

We consider the case ¢ = 1 the simplest case to obtain the
normalization. Using (3.13) to express the 4, (X,?) fields in
terms of B,, (£,t) we find from (5.4),

[Ba (E1),By (Eot) | = i(1 4+ a€ ) Popn 8> (€ — &o)-
(5.5)
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Consider the solution (4.34) and perform the replacement

sston( ) s )0 ) (5)
() (s (£) 515

(5.6)
which results in
AoA_ =A —ieakbs — la(€l —£3)éE. (5.7)

This corresponds to a complex time translation, analogous
to the flat space definition of 4 __ in (2.14). Then the real
and imaginary parts of this solution correspond to the homo-
geneous propagators. Identifying the imaginary part with
the commutator — i[B,, (g‘,t),BN (5_‘0,10) ], we find

i Im Gy (E,’§Eorto)
at t=1,

= — 47°FR 2(1 + aEg)POMN53(E - EO)

(5.8)

J

and comparing with (5.5) we find for the normalization con-
stant

= — 1/47°R*>. (3.9)

Of course, one can do the same calculations for ¢ 5% 1 with the
same result, but they are more tedious. When we take the flat
space limit of this solution (a¢—0) we obtain exactly
D,, (x —y) [Eq. (2.15)]. The Feynman propagator G 5y
can also be obtained from the homogeneous propagators
Re G,y and Im G,y in the following way analogous to the
scalar case'”:

Gt = (1720){Re Gy + i€(t — t,)Im G, 5 . (5.10)

VI. ANTI-DE SITTER QED?

Consider the solutions (4.23)—(4.26). Taking the ap-
propriate combinations of transverse and longitudinal solu-
tions and taking the limit m — — 1, we obtain with the prop-
er normalization the following solutions:

1\ 2 A
G o (m = '1)‘47721{2{}) P"N[( ) (1_’)[ ~ln("7()
2\y1 -4 11—yl -4 21— A4
_(1+—\ In ”+a§PON§o PM[( )————
Al 2 1+y1—4 3c A
+(1~i) Bi-1 ln( ) —1—(/1 ) l————l—”"{ ”] (6.1)
3¢ A’ 2 1+J1 =4
1 4 J1— 1y|v1—4
G - —1)= IP P [— _<1___)[ ( )
e (71 et AL E 3l 2 )
xin( = 2) = Ltn l—vl-4 ” a§P0N§OPM[——§~—~2—+—1O—,
4 A 1+J1=4 A% 3cA 3cA?
+(1—i)[i(1+i—iz)1n(—i)+8”_’1 m|1=vi=4 H] . (6.2)
3c/LA A A 4 A3 1+yT =4
I
Performing the transformation A—-A_, and taking the Furthermore,
imaginary part, we obtain the appropriate homogeneous
. . > 1 J1-4 1 1
ropagators, which reduce in the flat limit t dy= = -, 6.6
propag e flat space limit to . S &, PRI A (6.6)

DY, (x—y) [Eq. (2.16)].

We see that the logarithmic contributions to the propa-
gators vanish when ¢ = §, which corresponds to ¢ = 2 of Ref.
8. We obtain in this case, writing the solutions as

P Pond(A) +a™' 8y 8 4d(A) (6.3)
that
(=t and ¢, = — g | LA
2°R* A 4mR*> || L T—A
(6.4)

Adding a combination of pure gauge propagators, we obtain
expressions without logarithms:

__ 1 1 _ 1 JT=2Z
1_277'2R2 ﬂ, s ¢l— 27TZR2 /{ . (6~5)
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which are the same solutions as the ones obtained by Ga-
zeau® for ¢ = 1.
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A limit theorem for basic states of disordered structures
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Let a(t,w) be a stationary process such that 0 < E[1/a(t,@)] < oo. It is shown that the random
boundary-value problem Hy = — (d /dt)a(t,w) (dy/dt) = Ay, y(0) =p'(L) =0, has a unique
solution (4, (w,L), y; (t:@,L)) for i>0 and A, (w,L)/A,, (L) — 1 almost surely as L - oo, where
A,; (L) is the jth eigenvalue of the averaged Hamiltonian H,y = — [1/E (1/a(t,w))](d *y/dt?)

= Ay, p(0) =y (L) = 0.

I. INTRODUCTION

Motivation for this paper comes from an article by
Grenkova, Molcanov, and Sudarev' where, among other
things, a one-dimensional random Schrédinger operator
H= — (d/dt)a(t,w)(d /dt) describing the quantum-me-
chanical behavior of an electron in a random medium is dis-
cussed. The result stated in Theorem 1 of Ref. 1, however, is
not mathematically rigorous. Namely, the arguments used
in the proof do not show that the random boundary-value
problem does have a solution on (0,L]. It has been proved
that for sufficiently large L = L(w), there is a unique solu-
tion except on a set of arbitrarily small probability and there-
fore neither the solution nor the corresponding eigenvalue is
a stochastic process and a random variable, respectively, as
being not defined on the whole probability space. Conse-
quently, correlation between energy levels cannot be de-
fined. Moreover, all estimates on pp. 108 and 109 (like I.16—
1.18) of Ref. 1 given for a fixed w from a set 4 (€) such that
Z (A, (€)) < € cannot be controlled on  — A4, (¢) for fixed
L which is crucial in stating that considered ‘“‘random vari-
ables” are asymptotically Gaussian. Another thing that
needs clarification is the following. What is meant by a solu-
tion of the random boundary-value problem as well as mea-
surability of the corresponding eigenvalues and eigenfunc-
tions?

Our aim here is to answer these questions as well as to
prove a new result, i.e., almost surely convergence of the
random eigenvalues as opposed to convergence in distribu-
tions of Ref. 1.

Il. RESULT

Following Ref. 1, the random boundary-value problem
is equivalent to

Hy = — —ii—a(xL, a))—d—y =py, x€[0,1],
dx dx ( 1 )

y(0) =y'(1) =0,
where u,; (w,L) = A, (w,L)L?, i>0.

At this point we explain the meaning of the solution of
(1). Note that for most processes the trajectories a(xL,w)
for fixed w are not differentiable and thus the first attempt is
to assume that a(xL,w) is absolutely continuous. Unfortu-
nately for many process it does not work (e.g., for pure jump
processes (d /dx) (xL,0) = Oforalmost allxe[0,1]). There-
fore we come to the following.
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Definition: A pair (u(w,L),y(x,0,L))is called a solution
of (1) if the following conditions are satisfied: (i) u(w,L) is
a random variable; (ii) y(x,w,L) is a stochastic process
whose trajectories are absolutely continuous; (iii)
(u(w,L),p{x,0,L)) solves the integral equation

1
y(x,w,L) =,u(w,L-)f G(x,z,0,L)y(z,w,L)dz
(]

X z du
= yL 3 ,L d -
pw )[J;y(zw ) ZJ; a(uL,w)

X du 1 ]
R E— ’ ’L d ’ 2
+J(; a(uL,w) Ly(zw = @

f" du
o a(uLw)’

f’ du
—’ x>z)
o a(uL,w)

is a random Green’s function.

One assumes that all equalities as well as properties of
considered processes hold almost surely. It is also assumed
that for a given w for almost all #ue[0,1], a(uL,w) #0and 1/
a(uL,w) is integrable on [0,1]. Obviously y in (2) is absolu-
tely continuous and y’ = (u/a) . y for almost all xe[0,1].
Note that y(0) = 0; however, to guarantee the second
boundary condition p'(1) = 0 an additional assumption on
the process a(¢,w) must be imposed.

It is easy to see that a (¢, )eD[0, «o }—<class of processes
which are right continuous and have left limits—is suffi-
cient. Combining the above we assume that a(t,®) is a sta-
tionary process in D[0,0) such that O<a=E[l/
a(0,w)] < . Note that by the Fubini theorem it implies
So[l/a(uw)ldu < « for te[0, « ). In addition by the ergo-
dic theorem

J'X du
sup e —
o a(ul,w)

0<x<1

where

G(xzw,L) =

Lt

1 du
< sup f—
\0«51 Ltfo a(u,w)
(almost surely) and therefore the operator
Y =Y (w,L): C[0,1]1-C[0,1],

’ < o0, a.S.

1
Iy(x) =J G(x,z,0,L)y(z)dz
(0]

is compact, having a bounded kernel G. Consequently there
is a sequence (u; (w,L), y; (x,w,L)), i>0 of the reciprocal of
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eigenvalues and eigenfunctions of & solving (2). The only
thing to prove is measurability of u, (w) and y, (x,0) for

fixed xe{0,1].
To this end note that

|
sup (Guu), sup (Fu,u)> —inf (Yu,u),
. llullc 01y =1 [l o, =1 llullcjo,00 =1
—inf (%u,u), otherwise,
Heell 0,1y =1
r
where C;[0,1] = {y,...,y; _ ; }* —the orthogonal comple- * du
ment in C[0,1] with the norm induced by J; a(ul,w) —Xa, X<z
(u,0) = §6 u(x)v(x)dx and y _, =0. G =9 . d ’
The above implies measurability of u;, because ( G u,u): J _av za, x>z,
o a(ul,w)

Q1 - R is measurable (the kernel G of & is measurable). To
show measurability of y; we will approximate & by step
operators & " as follows. Take the kernel G " (-, *,w,L) such
that

NG"(-, L) —G(-, o,L)]| — O
C[0,1]1x[0,1]
as n—o oo (4)
and G"(-, ,0,L)eC [0,1]* does not change for weQ,,
k = 1,...,n, where Q, form a disjoint partition of 2.
Pick an arbitrary w,€Q,, k=1,.,n, find
(Wi (@, L)Yy (x,0,,L)) such that

1
yi =u?f Gy;
(¢]
and set
Vixw L) = Y piw,L)y] (xw,,L) g, (@) .
k=1

Then y? satisfies
1
yi =#,-"f Gy
0

Since
sup sup|G"(x,zw,L)| < 0, as.,

n (x,z)
therefore { y"} is relatively compact in C[0,1] and thus has
subsequence converging to J, (*,w,L).
Now for fixed w

Gy} — GH<IG ! =Tl + (G" — Gy -0
and by (3) and (4), uf—p; .
Consequently, G "y; -Gy, and

1
Vi =/uif Gy, .
0

Next by uniqueness j; = y;, whence the sequence { y} itself
is convergent and thus y; is measurable.
To complete our analysis consider the following':

Gy=p(F+ Y y=y, (5)
where
xa, x<2z,

1
9oy=f G,(x2)y(z)dz, G, = [
0

za, XxX>2z,

1
gly:f G1(X,Z,0),L),V(Z)d2,
o]
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with G, the Green’s function of the averaged Hamiltonian
2

1 d
Hy=——=2 =p,,

0)=y(1)=0 6
—— »(0) =y'(1) (6)

and G, the corresponding random counterpart which by the
ergodic theorem converges to 0 almost surely in L 2[0,1]2

Denoting the solution of (6) by (¢,;, ;) and using (5)
one has

Ui Vo) =1, (F o ¥is Vo) +:ui(g1yi9yoi)’

oill = il = 1,
whence by self-adjointness of &,
B Bis Yoi)

= -1, as.,

Hoi Wis Yoi) + 16 (F 1 Y5 Vi)

since [ (¥, ¥, ,)|<||% 1| »0and y, tends toy,; in L >[0,1]
as L — oo. Equivalently, applying (1) one obtains

Aw,L)/y, (L)—1, as.,

as claimed.

Remark: To make theorem 1 of Ref. 1 work, besides
measurability, one needs to show two things: (I) there is a
unique solution on [O,L], as., (II) u,(x,L)=p,

+ b, (w,L), where b; (0,L) is asymptotically Gaussian for
large L.

To this end apply Skorokhod’s result (cf. Ref. 2, p. 281)
to £, (¢) - weakly Wiener process, i.e., replace it by 7, ()
5 Wiener process. Then use existence arguments similar to
ours to ensure (1). Next repeating the analysis of Ref. 1 (pp.
107 and 108) we have

Hoi
Z (gl(w>L)yoi7yoi) +7rL (w))

ﬂi((‘)!L) =Hoi — (

X1, (@) +p (@0, L)1 (@),

where u,(w,L) is the eigenvalue found in (I),
sup|r, . (w)|<cli,e)/L and Z (A {)<e which proves (II)
weAd;

because {4 | (w,L)y,;,,;) is asymptotically Gaussian for
large L.

'L. N. Grenkova, S. A. Molcanov, and Yu. N. Sudarev, “On the basic states
of one-dimensional disordered structures,” Commun. Math. Phys. 90, 101
(1983).

?A. V. Skorokhod, “Limit theorems for stochastic processes,” in Theor.
Probab. Appl. 1 (3), 261 (1956).
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A simple method has been developed to generate a closed formula for the calculation of matrix
elements of arbitrary functions f{x) in the representation of the harmonic oscillator. The
proposed algebraic procedure is based on the combined use of the hypervirial theorem with
and without the second quantization formalism along with the parameter differentiation
technique. The closed formula thus obtained is given in terms of a sum involving the jth

derivative of f(x) evaluated at zero.

I. INTRODUCTION

Recently, an algebraic procedure based on the hypervir-
ial theorem' and second quantization formalism has been
developed to derive generalized recurrence relations for the
calculation of arbitrary function integrals in the one-dimen-
sional harmonic oscillator (HO) representation.” Despite
the fact that recursion formulas allow us to obtain matrix
elements, a closed-form expression is always desirable. In
this respect, Wilcox” has shown, by an analytical procedure,
that the one-center m,n matrix element of an arbitrary func-
tion f(x) in the HO representation, is given by a closed for-
mula in terms of an integral that involves the Fourier trans-
form of f(x); the analytical procedure to evaluate such
integral is, however, sometimes long and cambersome sincej
integrations by parts are necessary. Alternatively, Palma er
al.’ have shown, by an algebraic procedure, that the com-
bined use of Cauchy’s integral and the Baker—Campbell-
Hausdorff theorem allows us to obtain a closed-form equa-
tion for the calculation of f{x) HO integrals. On the other
hand, heretofore, one of the main uses of hypervirial theo-
rems has been as a means of deriving relationships between
quantum mechanical matrix elements.® As far as we know,
the power of the hypervirial methods has not been exploited
to obtain closed-form expressions for the calculation of ma-
trix elements. With this purpose, in the present work we
point out a procedure that proposes the use of the hypervirial
theorem, with and without the second quantization formal-
ism, along with the parameter differentiation technique”® in
order to obtain closed formulas for the evaluation of HO
integrals. The present scope is restricted to the one-center
matrix elements case, but the proposed method can be ex-
tended to the calculation of two-center HO integrals as well
as other potentials.

To schematize this approach, the next section is devoted
to the determination of closed formulas for matrix elements
of exponential operators. The results thus obtained are used
in the subsequent paragraphs in order to derive the corre-
sponding closed formulation of power and Gaussian func-
tion integrals. A closed-form expression for integrals of arbi-
trary functions is then obtained from the above results.
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. EXPONENTIAL INTEGRALS

Consider a one-dimensional problem for which the ei-
genfunction satisfies the time-independent Schrédinger
equation

2
H]n):(—ad—2+ V(x))[n):E,,|n), 2.1
dx

where a = #°/2u and the eigenenergies E,, , mass u, and po-
tential constants implicit in ¥ (x) are assumed to be known.
In the most general case of a f{x) function such that

[(Vx),fix)] = (2.2)

the exact generalized recurrence relation for the calculation
of f(x) matrix elements as a function of eigenenergies for any
V(x) is given, from the second hypervirial theorem, by>®'°

(E,, — E)*m|f(x)|n)
@ (m |df(")| ) —2a(E, +E,)

< (m ldf(x)l ) + dalm |‘”(") V) n)

+ 2a(m|

df(x) dV(x) 1) (2.3)
dx ' ’

dx

In the particular case of f(x) = exp( — 3x) and HO poten-
tial, the corresponding recurrence relation becomes

((E,—E,) +aB*+2aB*(E, +E,))

X (ml|exp( — Bx)|n)
= 2Kaf3 *(m|x* exp( — Bx)|n)
— 2Kaf3 (m|x exp( — Bx)|n), (2.4)

where K is the force constant. Although it seems at first
glance that the above recursion equation cannot be put to
practical use, we will see its usefulness at once. To obtain
closed formulas for exp( — fx) matrix elements, we assume
that the HO eigenfunctions are independent of the 3 param-
eter. Then, the above recursion relation is transformed by
parameter differentiation® into
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A Bpn . 1 B
B> B dp
~74;—2(4A +4TB + BB, =0,

2.5)

where
Y(B) pun = (mlexp( — Bx)|n),

= (m —n)? and T=m + n + 1; we use natural units
fi=pu=w=1
At this point, in order to clarify the proposed method,
instead of solving Eq. (2.5) directly, we shall consider some
useful particular cases.

A. m=n=0 generator matrix element

Straightforwardly, the corresponding differential equa-
tion is given by

dz,V(ﬂ)oo 1 d,V(ﬁ)oo 1 5
LI LI 4 =0
PTE T 2 B2+ 4)y(Boo
(2.6)
with solution
Y(Boo = Coo exp(B2/4) =exp(B2/4) . 2.7

B. Diagonal matrix elements

Similarly to the previous case, the differential equation

2
f(B) df(ﬂ) dB | wrpy =

+ (1 — (2.8)

where the independent varlable isz= —f?/2and
Y(B) o =S(BYexp(B?/4),
has as its solution
VB pm = Crpom exp(B*/4)L,,( —B?/2)
=exp(BY¥/4)L, (—[B%/2). (2.9)

It is important to notice that y ()., as well as y(5),, ., have
been obtained without the explicit use of wave functions; the
coefficient C,, = C,,,, = 1 comes from the initial condition
3 = 0 and the orthogonality requirement

(m|n) =6,,, . (2.10)

C. Off-diagonal matrix elements

The (m,n)th matrix elements of the operator

exp( — Bx) come from
2
d szgz) +(m+2f;+ 1 i 14—227'2 —%-)Q(z) _o.
(2.11)

where 7> = A4 and

f(z2) =Q(2)P(2),
where

P(z) = (—z) "% exp(z/2), z<0.

Thus, in the case n > m,
r=n—m

and Eq. (2.11) transforms to
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2
dszgz) +(2m —;zr+1 " 1;;2 —’i—)Q(z) —0
(2.12)
with solution
Q@z)=C,,, exp(—z/2)z"+* V2L (2), (2.13)
ie, forn>m,
VB pn = Crpn (—BA2)" ™
X exp(B2/4)L %~ "™( —B?/2) (2.14)
and similarly for m > n,
Y B = C o (—BH2)" "
Xexp(BY/4)L7~"(~B%/2).  (2.15)

Here, unfortunately the C,, , coefficient cannot be deter-
mined from 8 = 0 and Eq. (2.10) as before. However, Mor-
ales er al.” have proposed a simple method, based on the
hypervirial theorem and second quantization formalism, for
the determination of proper recurrence relations for matrix
elements in the HO representation. Thus from their corre-
sponding recurrence relation

(m—n)y(B),..
=BIn/2Y(B) 1 —BNm2y(B) 1, s (2.16)

along with the recursion formulas for the generalized La-
guerre polynomial'! for m > n,

LT LT L 2.17)
and
Lm—r-tepmern_pmen (2.18)
one gets
(mynC,,, _ —mC,, _, L7~}
((m—n)C,,,,,-i—ﬂ\/_ o — 1
_mC,,_ LT (2.19)

Finally, by using the fact that L 7" and L ? ~ " are linearly
independent,

m‘/;;cm,n—l - \/Tn—cm—l,n =0 ’

(m—n)cm,n +n\/gcm,n \/—_ m—ln — ’
it follows immediately that

Cpn =+Vnl/m m>n, (2.20)
and similarly
C,..=vym\/n!, n>m. (2.21)

The closed formulas for the evaluation of the y(f3) ,,, ,, matrix
elements are given by Eq. (2.14) and Eq. (2.15) with the
C,,. corresponding coefficients specified in Eq. (2.20) and
Eq. (2.21).

11l. x* AND GAUSSIAN INTEGRALS

In this section the results obtained in the precedent
paragraph are used to obtain closed formulas for the evalua-
tion of power and Gaussian matrix elements as well as some
particularly useful recurrence relations.
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It is enough to consider n > m since m,n represent ex-
changeable wave functions. Then, in the first case, from the
identity

where

X, = (m|x*|n)

_ k
YB)n = Z( k[';) Xhns (3.1) along with the condition # — m = 24 in Eq. (2.14), one gets
k !
]
lml Al 2n!
n! , >4, 3.2
X2 = i ,;o QU= =2 1 — )W (m — 2 + ) E3 2;;
0, 1<A, '

where [m,p] denotes the smaller of m and p. Similarly, the case of n — m = 24 + 1 is given by

(21 + 1)

Equations (3.2b) and (3.3b) give the well-known selection
rule* that (m|x’ |n) vanishes unless j>n — m. Furthermore,
all the possible cases to be considered are covered by means
of Egs. (3.2) and (3.3) along with

O, r=2/+1 and (n —m) even,
0, r=2/ and (n — m) odd.

(3.4a)

v |
’ (3.4b)

Additionally to the above equations, some useful recurrence
relations for practical calculations are

X21+2= (1 + 1)(2l+ 1)X2I

O.n 20+1-1) ons N (3.5)
and
31”+3:M£+_1)X(2)1n+1, n=2+1 I>A,
' 20+1-4) '
(3.6)

where X3/¥'=0for n=21+1, /<4, and X, =0 for
n = 24,1 < A. In a similar way, the previous results are used
to obtain the corresponding closed formula for the calcula-
tion of Gaussian-type integrals; i.e., from the definition of
the Gaussian function, it is directly recognized that
(mlexp( —fBx*)n) =0 < n—m=o0dd.
Consequently, when n — m = 24 it leads to
(m|exp( — Bx*)|n)

0 _RY
= z (—8) Vm!n!
i=A A F=0

X L . (3.7)
(m— 124 + A

This equation can be simplified by using the identity

[mj—A]

(2)!
Y — A=)

A+m %0

i =Y+ 3 (3.8)
j=2 j=2 j

=A+m+1
to

]
F@i+20(0)

2 A 4 W m— I 2A+ 1+ i

>4, (3.3a)

I<i. (3.3b)

|
(m|exp( — Bx?)|n)
m 2"
= 2*/m'n!
,Z‘o (m — 24 4+ A
< (=BY(2)!
PSR 29— A =)

Finally, the identification of the last sum in the above equa-
tion transforms it to

(mlexp( — Bx*)|n)

(m!n!)‘/2 m ( B )(n~m+2r)/2
\1+p 2, 2148

(3.9)

% (n—m+2r)!
(m—r((n—m+r)r+ (n—m)/2)
(3.10)
Some useful particular cases are the generator'’
(Olexp( —Bx%)|0) = (1 +8) "2, (3.11)
the up/down*?
n/2
< |exp( Bx )I!’l) (1+/J’)("+W2(n/2)! ( )
and the diagonal
(nlexp( — Bx*)|n)
_ n! i (_ B )’ §2r)! (3.13)
JI+B 7=o 200+ 87 (M)’ (n—r)!

matrix elements.

IV. INTEGRALS OF ARBITRARY FUNCTIONS

The above results can be used in order to obtain a gener-
alized closed formula for the calculation of integrals of arbi-
trary functions within the HO representation. In fact, in the
case of a f(x) function, such that it can be expanded in a
Taylor series, it is immediate to show for n — m = 24 that

(m] ) ) = minl S lmzﬂ

S S0 2Y A (G ) (m — P)IQA + )i

aswellasforn —m =24 + 1

(4.1)

f(2j+2,1+ 1)(0)

(m| f(x)|n) = minl 5 Iiﬂ

2+ A4 — 1/2
j:or:oz‘H_ r+ s
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(j=—r)(m—r)l(n—m+ r)! ’

(4.2)
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Similar to the Gaussian integrals case, the use of the identity specified in Eq. (3.8) in the above two equations leads indepen-

dently in the general case of any m and n, to

f(2j+n—m72r)(0)

nxm. (4.3)

<m|f(x>|n>=(2’fﬂ”fn)‘/2 S 3

This equation is an exact closed-form expression for the cal-
culation of f{x) matrix elements in the HO representation.
Its application to a given f(x) needs exclusively the identifi-
cation of the last sum over the (2j 4+ n — m — 2r)th deriva-
tive of the function f(x) evaluated at zero. We want to point
out, however, that Eq. (4.3) has also been derived recently
by Palma ez al.® by means of an alternative algebraic method
that proposes the combined use of the Cauchy’s integral for-
mula and the Baker—-Campbell-Hausdorff theorem.

V. DISCUSSION

As far as we know, in the present work the hypervirial
theorem has been used for the first time, not as a means, as
usually, of deriving relationships between quantum mechan-
ical integrals, but as a useful media to obtain closed-form
expressions for the calculation of matrix elements. This has
been made possible with the help of the second quantization
formalism along with the parameter differentiation tech-
nique. By using the HO representation, as an example, the
proposed method has permitted us to rederive the well-
known exact closed formulas for the calculation of exponen-
tial, power, and Gaussian functions integrals. Additionally,
a generalized closed formula for integrals of arbitrary func-
tions has been also obtained. Our proposed exact general
closed formula [ Eq. (4.3) ] seems to be easier to handle than
the one given by Wilcox.* Finally we want to add that the
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algebraic procedure shown here can be extended to the de-
termination of the corresponding mathematical formulas for
the calculation of two-center HO integrals as well as other
potential matrix elements.
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A general method is presented for analytically calculating linear stability limits for symplectic
maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and
the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension
and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The
results are applicable to many physical problems, including the restricted three-body problem

and orbital stability in particle accelerators.

. INTRODUCTION

Symplectic maps occur in many physical problems, in-
cluding orbital stability in particle accelerators,’ plasma
wave heating,>® and the restricted three-body problem.?
Any time-periodic Hamiltonian system of n degrees of free-
dom generates a 2n-dimensional symplectic map, by follow-
ing the flow for one period. Similarly, an autonomous Ham-
iltonian system of #n + 1 degrees of freedom induces a family
of 2n-dimensional symplectic maps parametrized by the val-
ue of the Hamiltonian, by considering the first return to a
surface of section. Return maps provide much useful infor-
mation on the behavior of continuous time systems, includ-
ing the existence or nonexistence of invariant tori, and the
location and stability of resonances and periodic orbits.”

While 2-D maps have found wide applications to phys-
ical problems and have therefore been extensively studied,®
higher-dimensional maps also occur in many problems of
current interest and there is a need to study their properties
as well. For example, four- and six-dimensional symplectic
maps arise in the venerable three-body problem,* orbits in
particle accelerators,' and electron-cyclotron resonance
heating using two wave frequencies.” In addition to these
practical applications, there are also interesting theoreti-
cal questions concerning higher-dimensional mappings.
Arnol’d diffusion has been investigated using a model 4-D
symplectic map.® Froeschlé and Scheideker have studied the
ergodic properties of four- and six-dimensional symplectic
maps.® Mao, Satija, and Hu have recently discovered period-
doubling sequences in 4-D maps, analogous to Feigenbaum
sequences in one- and two-dimensional maps.'°

In all these investigations it is useful to have analytic
formulas for the linear stability limits of the fixed points
(and periodic orbits) of the mappings. For example, for 2-D
area-preserving maps it is well known that a necessary con-
dition for linear stability of a periodic orbit is |Tr L |<2,
where L is the tangent map round the orbit (definition to be
recalled shortly). Analogous stability criteria for 4-D sym-
plectic maps were derived by Broucke,* who studied period-
ic orbits in the restricted three-body problem, and later by

* Present address: Laboratoire PMI, Ecole Polytechnique, 91128 Palai-
seau, France.

1036 J. Math. Phys. 28 (5), May 1987

0022-2488/87/051036-16$02.50

Dragt.! (See also Refs. 11 and 12.) However, these analyses
did not take into account the crucial role of the Krein signa-
tures.'*'* Moreover, the important case of 6-D symplectic
maps has apparently not yet received attention. In this paper
we derive explicit expressions for the stability boundaries for
symplectic maps of arbitrary dimension, including the ef-
fects of the Krein signatures, and treat the cases of dimen-
sion up to 8 in detail.

It is also useful to know the generic ways that linear
stability can be lost. For a symplectic map to lose linear sta-
bility it is necessary to have at least one multiple eigenvalue
on the unit circle (S'). In this paper, we analyze the typical
behavior of families of symplectic maps of arbitrary dimen-
sion near all cases possessing a double eigenvalue on S '. Par-
ticular attention is given to the subclass of reversible maps,
which occur frequently in physical problems.

We shall find it useful to employ two closely related
notions of stability of periodic orbits, both depending only
on the linearization of the map about the orbit. We define the
tangent map to a periodic orbit of period ¢ to be the deriva-
tive of the gth iterate of the map at one of the periodic points.
For a Hamiltonian system it can be represented by a sym-
plectic matrix (the product of the Jacobian matrices round
the orbit).

Definitions'®: (i) A periodic orbit is said to be linearly
stable if, given € > O, there is a §(€) > O such that all orbits of
the tangent map initially within § of O remain within € of 0
for all forward time.

(ii) A periodic orbit is said to be spectrally stable if all
eigenvalues of the tangent map have modulus less than or
equal to 1.

A periodic orbit is linearly stable iff it is spectrally stable
and all Jordan blocks corresponding to eigenvalues on the
unit circle are one dimensional.'® Since, as will be shown, the
boundaries of linear and spectral stability are identical for
symplectic maps, the concept of spectral stability allows us
to describe stability limits without continually excluding the
case of multiple eigenvalues.

The paper is organized as follows. We begin by collect-
ing together in Sec. II some useful properties of symplectic
maps. We then examine the characteristic polynomial for a
general symplectic matrix of degree 2n and show how it may
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be reduced to a polynomial of degree n. General expressions
for the stability boundaries are then given in terms of the
properties of this “reduced characteristic polynomial.” This
is accomplished in the general case by means of Sturm’s
method,!” which gives the number of real roots lying in a
given interval for an arbitrary polynomial with real coeffi-
cients. Maps through dimension 6 are more simply treated
by an alternative method involving the discriminant of the
reduced characteristic polynomial and absolute bounds on
the stability region. In Sec. III we review the important role
of the Krein signatures in determining the behavior of sym-
plectic maps of dimension greater than 2. These general re-
sults are then applied to the specific cases of dimension 2, 4,
6, and 8. The 2-D case is of course well known; the 4-D
problem has been treated previously,® but the effects of the
Krein signatures were not included. These two cases are
therefore described in Secs. IV and V for completeness and
unity of treatment. The central result of the paper (Sec. VI)
is a complete description of the stability boundaries for 6-D
symplectic maps, which arise in time-periodic, three-degree-
of-freedom Hamiltonian systems. In Sec. VII we also obtain
explicit stability boundaries for 8-D symplectic maps, which
requires Sturm’s method for a complete solution.

Section VIII addresses the question of the likelihood of
encountering a double eigenvalue on S ' and determines the
typical behavior of a family of maps containing a member
with a double eigenvalue on S'! as one or more control pa-
rameters are varied. The behavior depends on the signature
of the eigenvalues and the Jordan normal form. We evaluate
the codimension of the various possible cases having a dou-
ble eigenvalue on S ' and unfold them. We consider both the
general and the reversible cases.

Il. SYMPLECTIC MAPS

In this section we review some useful properties of sym-
plectic maps and derive some general results about the sub-
set of stable ones.

A. Symplectic maps and canonical transformations

A mapping M of a 2n-dimensional manifold is called
symplectic'® if its tangent map L = DM, the derivative of M,
preserves a nondegenerate antisymmetric bilinear form,
“called the skew-scalar product,

[LELn] = [En] (2.1

for all £meR*". By Darboux’s theorem,'® local coordinates
can always be found such that the skew-scalar product takes
the standard form

[Em] =ETm, (2.2)
where
J—[ 0 I,,] 23

and I, is the n X7 identity. Equivalently (in such a coordi-
nate system) a mapping M is symplectic if its Jacobian ma-
trix L satisfies

LTIL=J (24)
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for all x. It can be shown that det L = + 1, so that symplec-
tic maps are volume preserving.

Hamiltonian systems possess a natural symplectic
structure. Indeed, Hamilton’s equations in n degrees of free-
dom can be written

ﬂ =J+DH(x,t),

dt
where x = (q,p) is the 2n-dimensional phase space point,
H(x,t) is the Hamiltonian, and DH is its derivative with
respect to x. Canonical transformations, those which pre-
serve the form of Hamilton’s equations and the value of the
Hamiltonian, may then be recognized as symplectic maps in
the standard basis (2.3). Invariance of the skew-scalar prod-
uct (2.2) corresponds to conservation of the Lagrange
bracket. It is also well known that the time evolution of a
Hamiltonian system may be viewed as a symplectic map
from arbitrary initial to final states. Hence the study of Ham-
iltonian systems can often be reduced to that of symplectic
maps, as mentioned in the Introduction.

(2.5)

B. Eigenvalues of symplectic maps

Let L be a symplectic matrix operating on R*”. It may be
shown from (2.4) that the characteristic polynomial

P(A) =det(L — AD) (2.6)
is reflexive, i.e.,
P(A~"Y =4 ""P) (2.7)
so that the coefficients of P(A) form a palindrome'3:
PA) =A% A A"~ 4 4 A2 _ ...
+AAT—AA 41 (2.8)

The coefficients of P are easily expressed as functions of the
matrix elements.

Since L is real, it follows that complex eigenvalues occur
inquadruplets (4,4 ~',A *,4 * Y unless |4 | = 1,whenthey
occur in complex conjugate pairs, while real eigenvalues
come in pairs A, A ~'. Furthermore, 4,4 *, 4 ', and A * !
have the same muitiplicity and Jordan block structure, and
eigenvalues + 1 have even multiplicity. It also follows that
L is spectrally stable iff |4 | = 1 for all eigenvalues A.

Following Broucke,* we associate with each eigenvalue

A a stability index
p=A+4A7 (2.9)

which plays a central role in our analysis, as illustrated by
the following.
Lemma: A real symplectic matrix is spectrally stable iff
all stability indices p are real with |p|<2.
Proof: From (2.9),
AP—pA +1=0
so that
A=Lpxi(4—pH'"?). (2.1

If 0<p?<4, it follows from (2.11) that |4 | = 1. Conversely,
if |4 | =1, then

(2.10)

p=A1e"+|A|"le"®=2cos (2.12)
with @ real. Q.E.D.
J. E. Howard and R. S. MacKay 1037



C. The reduced characteristic polynomial

Using the reflexive property (2.7), dividing the charac-
teristic polynomial (degree 2n) by A " yields a polynomial in
p of degree n:

Q(p) =4 ~"P(A)

=p"—Aip" T+ (—)4], (2.13)
which we call the reduced characteristic polynomial. The co-
efficients of Q are easily derived from those of P. In fact the
transformation between them is affine and invertible.

For a given root p, the corresponding eigenvalues
(1,4 ~') are then given by (2.11). Thus the calculation of
the eigenvalues of a symplectic matrix has been reduced
from solving a polynomial of degree 2n to one of degree #,
plus the quadratic (2.10). This is not only a considerable
reduction in effort, but also allows explicit expressions for
the eigenvalues of the otherwise intractable 6-D and 8-D
cases. More importantly, it will enable us to find necessary
and sufficient conditions for spectral stability in arbitrary
dimensions.

D. Spectrally stable region

We can restate the previous lemma as follows.

Proposition: The symplectic matrix L: R*" - R>" is spec-
trally stable iff all roots of Q(p) are real and lie in
[—2,+2).

Corollary: The set of reduced characteristic polynomials
Q(p) for spectrally stable symplectic matrices is homeomor-
phic to a closed ball in R”, the interior corresponding to
polynomials with all roots real and distinct and in
(—2,42).

Proofs The map from {(p,,....0,): —2<p,< " *<p,

< + 2} to monic polynomials of degree # with all roots real
and in [ — 2, + 2], defined by

(pl:“-rpn)_”H (P—P,), (2.14)
is a homeomorphism. The proof is analogous for the inter-
iors. Q.E.D.

In particular the stable region is simply connected. The
same is true in the space of coefficients of the characteristic
polynomial P(A4), since the transformation between coeffi-
cients of P and Q is a diffeomorphism.

Also it follows from the form of the characteristic poly-
nomial that the stable region is invariant under simultaneous
reflection of all the odd coefficients of P(4). The same is true

for Q(p).

J
l41] < 2n,
— 2n, n even]<A£ <mn—1y,
—2(n—1), n odd ,
l43] <

We now derive conditions on the coefficients of Q for all
its roots to be real and in [ — 2, + 2]. For a polynomial
Q(p) of degree n with roots p,,...,0,,, counting multiplicity,
the discriminant is defined to be

A(Q) = H (p; —'Pj)z-

i<j

(2.15)

Itis zero iff there is a multiple root. If all the roots are distinct
it is positive or negative according as the number of complex
conjugate pairs is even or odd. Thus A(Q) undergoes a
change of sign every time a quadruplet leaves S''. The dis-
criminant can be computed directly from the coefficients of
Q without having to find the roots (Appendix A).

Define X, to be the set of polynomials Q of degree n
satisfying

(1) Q(+2)>0,

(i) (—=)"Q(—2)>0,

(iii) A(Q)>0.

Theorem: If L is spectrally stable then QeX ..

So if any of these conditions is violated then L is spec-
trally unstable. However, except in 2-D, they are not suffi-
cient for spectral stability. For example, in the 4-D case there
are ‘‘wedge regions” where there are two real positive pairs
or two real negative pairs of eigenvalues (look ahead to Fig.
3) contained in 2,. Similarly, in 8-D there are configurations
with two quadruplets belonging to Z,. In general, 2, can be
decomposed into several regions with different configura-
tions of eigenvalues, of which the stable region is but one.

Proposition: The set of reduced characteristic polynomi-
als Q(p) for spectrally stable symplectic maps is the closure
of one component of the interior of 2.

(2.16)

E. Absolute bounds

What we require now is some method to decide whether
a given Q€X is in the stable region. We present first a partial
answer which will turn out to be sufficient for #<3. The
coefficients 4 | of Q are related to the roots p; by

A =Zpir

A3 =) pips
? g; ’ (2.17)
A;:plpn

The condition on the roots for spectral stability allows one to
calculate absolute bounds on the coefficients for the stable
region (Appendix B), for example,

4n(n — 1)(n —2)/3,

(2.18)

2n(n —2) — (4n — ¥)An* + 3 An*< A4, <3n(n—1)(n —2)(n —3),

4,1 <2%
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where An is the closest odd (even) integer to (37 — 4)/? for
n odd (even). The motion is unstable if any of these condi-
tions is violated. These bounds are optimal in the sense that
for each bound there is a spectrally stable map for which
equality is attained.

F. Sturm’s method

A complete answer to the question of how many real
roots a polynomial Q(p) has in a given interval [a,b] is pro-
vided by Sturm’s method,"” which we now outline. Define

F (p)=0'(p), (2.19)
and F,, k>2, Gy, k>1, inductively by division:

Fo () =G_(p)F_,(p) —F.(p),

deg(F,) <deg(Fi_,), (2.20)

until a constant polynomial F, is obtained (¢<deg(Q)). Let
V(p) be the number of changes of sign of the sequence
F,(p), F,(p),..., F,, ignoring any zeros. Then the number of
distinct real roots in (a,b] is

V(a) — V(b). (2.21)
If @ has any multiple roots then F, = 0 and conversely. In
that case F,_ | (p) is a greatest common divisor of Q(p) and

Q’(p). Then the number of distinct roots in the whole com-
plex plane is

deg(Q) —deg(F,_,). (2.22)
Thus all the roots of Q are real and in [a,b] iff
Via—)—V(b+)+d=deg(Q), (2.23)

where

Viag—)=lim, ., (a'), V(b+)=Ilim, ,(b"),

(2.24)
and
if F,#0,

otherwise. (2.25)

d [O’
" |deg(F,_,),

This is quite an easy algorithm to implement. Typically,

deg(F,) =deg(F,_,) —1 (2.26)
and ¢t = deg(Q). In this case the test reduces to
(=)"Fy(—2)>0, Fo( +2)>0,
(—)'Fi(—2)<0, Fi (+2)>0,
: (2.27)

F,_,(—-2)<0, F,_,(+2)>0,

F, >0,

because the only way to achieve V( —2) — V(+2)=nis
for the signs to alternate at — 2 and be constant at + 2. The
case with all the above inequalities reversed is impossible
since Q(p) begins with -+ p".

The top pair of conditions are just the first two condi-
tions defining =, (2.16). We believe that the last condition is
equivalent to the third condition defining 3,, because
F, = 0iff there is a multiple root and we suspect that F, and
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A always have the same sign (see Appendix A). The other
inequalities select the correct “component” of X, .

G. Stability boundary

From the results of Sec. II B limiting the possible eigen-
value configurations, it follows that there are just three basic
ways for a symplectic map to lose spectral stability, as de-
picted in Fig. 1.

(i) Tangent bifurcation: Two eigenvalues coalesce at
A = +1 and split along the positive real axis (a stability
index increases through + 2).

(ii) Period-doubling bifurcation: Two eigenvalues co-
alesce at A = — 1 and split along the negative real axis (a
stability index decreases through — 2).

(iii) Krein collision: Two complex conjugate pairs of
eigenvalues collide and split off S at a point where 4 2# 1
(twostability indicesin [ — 2, 4+ 2] merge and become com-
plex).

Combinations of the above cases or the occurrence of
eigenvalues of multiplicity greater than 2 are clearly possi-
ble, and are included in the above statement.

The first two cases are so named because, typically, peri-
odic orbits of the full nonlinear map suffer tangent (saddle-
node) and period-doubling bifurcations, respectively, in
these cases. Krein collisions are named after M. G. Krein,'°
who proved that additional invariants exist for symplectic
maps with eigenvalues on .S !, which may prevent colliding
eigenvalues from leaving S'. These invariants, called the
Krein signatures, will be described in Sec. IIL

Thus most of the information on the boundary of spec-
tral stability is contained in the reduced characteristic poly-
nomial.

Theorem: The boundary of the set of reduced character-
istic polynomials Q(p) corresponding to spectrally stable
symplectic maps of dimension 22 is the union of the sets of
spectrally stable maps on three“‘transition boundaries™ giv-
en as functions of the coefficients of the reduced characteris-
tic polynomial Q(p) as follows:

Y
[ Period
Doubling
X .
(2)
OG-
(2 .
Krein
4 Collision
Tangent (2)

Bifurcation

¥

@,

FIG. 1. The three destabilization routes for symplectic maps.
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(i) Tangent bifurcation: o(+2)=0

(ii)  Period-doubling bifurcation:
(iii)

Krein collision:

A(Q) =0.

Note that not every system on one of these boundaries is
spectrally stable. Absolute bounds or Sturm’s method can be
used to find the spectrally stable part. In particular, the tran-
sition boundary A(Q) = O contains other possibilities than
Krein collisions, e.g., merging of two pairs of real eigenval-
ues into one, merging of two quadruplets into one, and merg-
ing of a quadruplet into a real pair. But the only part of this
transition boundary which adjoins the stable region is the
part where there is a Krein collision.

While it is easily proved that all symplectic maps satisfy-
ing (i) or (ii) are either already spectrally unstable or on the
boundary of both spectral and linear stability, this is not true
for maps satisfying (iii). The outcome depends on the Krein
signatures, which we shall now describe.

1ll. KREIN'S THEOREM

We present here the basic ideas and results about Krein
signatures.'>'*+1?

Consider a real linear symplectic map with a pair of
eigenvalues A, A * on S, with 4 £ 1. Let ¥, be the corre-
sponding real invariant subspace, that is, the space of tangent
vectors of the form x = § + E*, where § is a generalized ei-
genvector'® for A, i.e., there is an integer & such that

(L - AD*E=0. (3.1)
Then
q(x) = [x,Lx], xeV, (3.2)

is a real quadratic form which can be shown to be nondegen-
erate on V. As is well known, a nondegenerate quadratic
form can be diagonalized to a unique canonical form

2m

gy =Y ey,

i=1

(3.3)

where €; = + 1 and 2m = dim V. The numbers m_ of
positive terms and m _ of negative terms are independent of
how the quadratic form is diagonalized. We define the signa-
ture of the eigenvalue pair (4, 4 *) to be the ordered pair
(m,,m_). It can further be shown that m _ are both even
(for A on S '\{ 4 1}), so we shall often write the signature
symbolically as a string of pluses and minuses, e.g.
(+ -+ — =), with m_ /2 pluses and m_/2 min-
uses. The signature may be calculated by any standard tech-
nique, such as Lagrange’s method.?®

The signature of an eigenvalue pair (4,4 *) is preserved
under continuous perturbation of L so long as A does not
reach + 1, collide with another eigenvalue, or split into two
or more eigenvalues. In the second and third cases, the total
signature is still conserved, provided that the eigenvalues
avoid + 1.

The signatures are significant because they may restrict
the motion of the eigenvalues as parameters vary, according
to the following.
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(P(+1)=0)
Q(—-2)=0 (P(—1)=0)

(2.28)

I

Krein’s Theorem'?: Consider a symplectic map L with a
pair of multiple eigenvalues 4,4 *onS 'suchthatA # + 1.If
the Krein signature is (positive or negative) definite (i.e.,
m_ = 0orm_ = 0), then the map has diagonal Jordan nor-
mal form on the corresponding generalized eigenspaces and
the eigenvalues cannot leave S ' under small perturbation of
L.

This is easy to see because ¢(x) = [x,Lx] is invariant
under L. Ifit is definite then all orbits must remain bounded.
Also it will remain definite for all nearby systems as they will
be stable too.

This was proved independently by Moser,'? who also
proved a converse.

Moser’s Theorem: If the signature is mixed (m_ #0
and m_ £0) then (i) either the Jordan normal form is non-
trivial or it can be made so by arbitrarily small perturbation,
and (ii) the eigenvalues can be split to form (at least) a
complex quadruplet by arbitrarily small perturbation of L.

Putting together these two theorems, we obtain the fol-
lowing.

Theorem: The boundary of spectral stability in the space
of linear symplectic maps of dimension 2» is the subset of
spectrally stable maps with an eigenvalue + 1 or a multiple
eigenvalue on S ' of mixed signature. It is also the boundary
of linear stability.

This still leaves open, however, the question of whether
typical perturbations of maps with eigenvalues of mixed sig-
nature will lead to instability. In Sec. VIII we shall deter-
mine the typical behavior of systems with double eigenvalues
on.S'! as parameters vary, for both mixed and definite signa-
tures. We will also treat the cases of double eigenvalues + 1.

The Krein signature can be defined similarly for real
pairs (4, 1/4), with A # + 1 and for complex quadruplets
(A, 1/4,4 *, 1/4 *), but in both these cases there is only one
possibility for the signature, viz.,, m_=m, =m. If
A = + 1then g(x) must be degenerate, the degree of degen-
eracy depending on the Jordan normal form.

The total signature of g(x) = [x, Lx], xeR*", is the sum
of the signatures of the real invariant subspaces correspond-
ing to pairs of eigenvalues on the unit circle, complex qua-
druplets and eigenvalues + 1. Thus these observations, plus
the remark already made that the m | are even for eigenval-
ues on the unit circle (# + 1), gives one quite a lot of infor-
mation about the configuration of the eigenvalues of L from
g(x) without calculating the characteristic polynomial of L.
For example, if ¢ is definite then L is linearly stable. If m _ or
m_ is odd then L is linearly unstable. Butif m . are nonzero
and even then L may be stable or unstable.

Analogous results for linear stability of equilibria of
Hamiltonian systems are given in Ref. 21.

IV. TWO-DIMENSIONAL MAPS

Although the stability properties of 2-D maps are well
known, we include a brief treatment of this case for com-
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pleteness and to illustrate the general method. In two dimen-
sions, symplectic maps are just those which preserve orient-
ed area. The characteristic polynomial is

P(A)=A%—AA +1, (4.1)

with 4 = Tr L. Hence the reduced characteristic polynomi-
al is simply

so that L is spectrally stable iff |4 |<2. The stability bound-
ary consists of the points A = 2 (tangent bifurcation), and
A = — 2 (period-doubling bifurcation). Since Q(p) is of de-
gree 1, the Krein collision cannot occur. Nevertheless, the
Krein signature is still well defined and it is instructive to
evaluate it.

Write
a b
L= . X
[c d (4.3)
Then, with x” = (x,,x,), Eq. (3.2) becomes
g(x) = cx} + (d — a)x,x, — bx3, (4.4)

which may be diagonalized by completing the square on x,
to obtain

g'(y) =cy} + [4 — (Tr L)?]y3 /4c (4.5)

(if ¢#0), where we have used the fact that det L = + 1.
Thus for 2-D area-preserving maps the Krein signature is
definite for elliptic orbits and mixed for hyperbolic orbits, as
the results of the previous section imply. In the elliptic case
the signature is the sign of ¢ (it is easy to show then that ¢ 0,
in fact be < 0).

V. FOUR-DIMENSIONAL MAPS

Four-dimensional symplectic maps arise from time-pe-
riodic Hamiltonians of two degrees of freedom, or from au-
tonomous three-degree-of-freedom Hamiltonian systems.
The characteristic polynomial has the form

PA)=A*—AA> + BA* — 44 + 1, (5.1)
where, by the method of Leverrier,'®
A=TrL, 2B=(TrL)>—-Tr(L?). (5.2)
Alternatively, the standard expression
B=Y La Ly (5.3)
Sl Ly

is somewhat more efficient computationally.
Dividing P(4) by A % and collecting terms gives the re-
duced characteristic polynomial

Qp) =p*—A4p+B—2. (5.4)
The stability indices are therefore
p=1(d+ (4% —4B+8)'? (5.5)

and (2.11) yields the four eigenvalues.

The transition boundaries for bifurcations are given by
substituting p = 42 in (5.4) or A = + 1in (5.1), which
yields the lines

A= +1:

A= —1

(5.6)
(5.7)

B= +24 -2,
B= —24-2,
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FIG. 2. Stability diagram for 4-D symplectic maps; 4 and B are the two
coefficients of the characteristic polynomial.

which intersect transversely at 4 = 0, B = — 2, as shown in
Fig. 2. The motion is unstable to the right of (5.6) and to the
left of (5.7). The transition boundary for Krein collisions is
given by A(Q) = 0, which is the parabola

B=A4%/4+2 (5.8)

on which the double root isp = 4 /2. The motion is unstable
about this curve, where the stability indices become com-
plex. The lines (5.6) and (5.7) are tangent to the parabola at
the points 4 = + 4, B = 6. The regions wedged between the
parabola and the tangent lines to the right of 4 = + 4 and
left of A = — 4 are also unstable, as shown in the inserts.
The stable region is thus the arrowhead-shaped region en-
closed by the three curves as shown. These results were de-
rived by Broucke* in connection with the restricted three-
body problem (see also Refs. 1, 11, and 12).

In summary, a 4-D symplectic map is spectrally stable
iff the following conditions are simultaneously satisfied:

B<A?/4 42, B<6.

Equivalent conditions may also be obtained very efficiently
by applying Sturm’s method to (5.1).

Now, by Krein’s theorem, not all maps reaching the
parabola (5.8) can actually destabilize, only those with
mixed signature. This requires calculating the total signa-
ture of [x, Lx], with xeR*, as explained in Sec. III. If the
signature is definite then it is impossible to cross the Krein
collision boundary. Indeed, we will see in Sec. VIII that it is
quite unlikely to even reach it. If the signature is mixed,
destabilization is possible, and in fact typical, as we shall also
demonstrate in Sec. VIII.

(5.9)
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VL. SIX-DIMENSIONAL MAPS

We now take up the main business of this paper, which is
to calculate the stability boundaries for the space of 6-D
symplectic maps. Such maps arise in time-periodic three de-
gree of freedom Hamiltonian systems, and are of current
interest in orbital stability in particle accelerators. The char-
acteristic polynomial is

P(A)=A%—AA°+BA*—CA>

+BA?— A4 + 1. (6.1)
Again using the method of Leverrier, we find
A=TrL, 2B=(TrL)>—Tr(L?),
r (Tr L) (L") (62)

3C=Tr(L?®) —ATr(L*) +BTrL.

Alternatively, B and C are more economically computed us-
ing the standard expansions (5.3) and

L; Lij L,
c=3 |Li L, L (6.3)
fel<k L, ij Ly

Dividing P(A) by A ? gives the reduced characteristic
polynomial

Q(p) =p* — 4p* + Dp — E, (64)
where
D=B-3 E=C-24. (6.5)

The eigenvalues are then given by (2.11). Thus the calcula-
tion of eigenvalues has been reduced from numerically solv-
ing the generally intractable sextic (6.1), for which algebraic
solutions do not exist, to the solvable cubic (6.4) and qua-
dratic (2.10).

The transition boundaries for bifurcations are again giv-
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en by substituting p = +2in (6.4), or A = + 1in (6.1),
which yields the planes

A=+4+1: A-B+C/2=+1,
A=—1 A+B+C/2= —1,

(6.6)
6.7)

which intersect at an angle cos ™' (1) = 83.62° along the line
C= —24,B = — 1.Inviewing the stability region it there-
fore seems natural to orient the B axis vertically, with the
planes (6.6) and (6.7) forming the lower boundary (Fig. 3).
The upper boundary is formed by the surface defined by
the vanishing of the discriminant of the cubic (6.4), i.e.,

A= —4p* —27¢4°=0, (6.8)
where

p=D—A47/3, (6.9a)

g= —E+AD/3 -24°/27 (6.9b)

are the coefficients of the reduced cubic.'” Substituting in
(6.8) then yields the two-sheeted quartic surface

A*D? 4 184DE =44°E + 4D* + 27E? (6.10a)
or
(AD —9E)* =4(4* —3D)(D* — 34E)
on which the corresponding double zero of (6.4) is
p1= (4D —9E)/2(A4* - 3D)
=2(D?*—34E)/(AD —9E). (6.11)
The two smooth sheets join at a cusped ridge where
p =g =0, along which p, = p, = p; =4 /3, so that
A?=3D, AD=9E, D?=3AE. (6.12)

Figure 3 is a perspective view of the striking stability
region bounded by the intersecting planes (6.6) and (6.7)

(6.10b)

FIG. 3. Perspective view of stability region
for 6-D symplectic maps in the space of
characteristic  polynomial  coefficients
(4,B,C). The planes P _Q,Q and
P_Q_Q, (the latter mostly out of view)
are the transition boundaries for tangent
and period-doubling bifurcations, respec-
tively, and the quartic surface (one sheet
clearly visible shaded) is the transition
boundary for Krein collisions. Allp, = + 2
at P, respectively, while p, = +2,
p2= —~20nQ. Q_ withp,= +2atQ,,
respectively. All p, are equal on the cusped
ridge P, P_.
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FIG. 4. Two cross sections of the
6-D stability region: (a) 4 =0
and (b) C = 0, showing bilateral
symmetry, the cusped ridge, and
transverse and tangential inter-
sections of the quartic surface

(a)

and the quartic surface (6.10). The stability boundary is the
rather complicated surface formed by the three intersecting
transition boundaries. Each sheet of the quartic surface in-
tersects one plane tangentially and the other transversely.
Together with the cusped ridge, these intersections form two
roughly triangular spires terminating at the points P, and
P_. The ridge curls over and becomes tangent to the
p = =+ 2 plane as each peak is reached. It is easily seen from
the form of the characteristic equation that the stability
boundary has reflection symmetry, i.e., the surface is invar-
iant under the transformation A<+ — 4, C«<> — C. The figure
therefore has bilateral symmetry when viewed from any di-
rection perpendicular to the B axis. Figure 4 depicts the in-
tersections of the stability region with the 48 and CB coordi-
nate planes, clearly showing the cusped ridge, bilateral
symmetry, and the transverse and tangential intersections of
the quartic surface with the bifurcation planes. We now give
explicit expressions for the various intersections of the tran-
sition boundaries; detailed derivations may be found in Ap-
pendix C.

The p = 2 plane (6.6) is tangent to one sheet of the
quartic surface along the line

(A4—-2)/1=(B+1)/4=(C+4)/6, (6.13)
where p, = p, = 2, intersecting the second sheet transverse-
ly along the curve given by

A4+ 4= 4+2C, A—B+C/2=1,

wherep, =p,and p; = + 2.
Similarly, thep = — 2 plane (6.7) is tangent to the sec-
ond sheet along the line
A+2)/1=@B+1)/(—4)=(C—4)/6, (6.15)

wherep, = p, = - 2, intersecting the first sheet transverse-
ly along the curve

A*+4= —-2C, A+B+C/2=—1,
wherep, =p,andp, = — 2.

These intersections bound the line formed by the inter-
secting tangent planes at the points @_ = ( —2, — 1,4),

(6.14)

(6.16)
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1 2 C with the bifurcation planes.

(b)

wherep, =p;= —2andp,=2,and 0, = (2,— 1, —4),
where p, =p, =2 and p, = — 2, as shown in Fig. 3. The
line (6.13) and the curve (6.16), lying in the tangent plane
(6.6), intersect the cusped ridge (6.12) tangentially at the
point P, = (6,15,20), where p, = p, = p; = + 2. Similar-
ly, the line (6.14) and curve (6.13) join with the cusped
ridge at the opposite point P_ = ( — 6,15, — 20), where
Pr1=pr=p3= —2.

The simply connected stability region thus formed is
shown in Appendix B to be bounded absolutely by
— 1<B<15, |4 |<6, and |C |<20. Of these, the single condi-
tion B< 15 suffices to eliminate unstable parts of 25, because
only one component of its interior is left.

In summary, a general 6-D symplectic map is spectrally
stable iff the following conditions are simultaneously satis-
fied:

B>A+C/2—-1, B>—A4-C/2—1,

(AD — 9E)?<4(4* —3D)(D* —34E), B<I15.

(6.17)
Equivalent conditions may be obtained via Sturm’s method,
but they are somewhat more complicated. Note that the
Krein collision condition [(6.10) and the third condition
above] is quartic in 4, cubic in B, but only quadratic in C,
which greatly facilitates practical calculation of stability
boundaries.

As in the 4-D case, whether a map satisfying the Krein
collision condition is actually on the boundary of stability
depends on the Krein signatures. It is straightforward to
calculate the total signature by diagonalizing [x,Lx]}, with
x<R®. If it is definite, then the eigenvalues cannot leave S '.
However, if the signatureis mixed ( + + — or + — —),
then, except in the case of triple collisions, one must deter-
mine which eigenvalues have which signatures. This ques-
tion does not arise in the 4-D case where there is only one
possible collision to consider. We have not found a simple
way to identify signatures with eigenvalues except by actual-
ly calculating the eigenspaces and evaluating [x, Lx] on
each of the corresponding subspaces V.
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VI. EIGHT-DIMENSIONAL MAPS

We shall limit the treatment of the 8-D case to a deriva-
tion of the transition boundaries, without identifying tan-
gent lines, etc.

The characteristic polynomial is

PA) =A% —AA"+ BA®—~CAS+ DA*

—CA3+BA?— A4+ 1, (7.1)
where the new coefficient D is given by
4D =Tr(L*) —ATr(L3®) +BTr(L*) —CTrL (7.2)
or
L; Lij L, L,
D= Lo by b B (7.3)
icickat [ L Ly L Ly
L, Llj L, L,
with the other coefficients as in the 6-D case.
The reduced characteristic polynomial is
Q(p)=p*~A4p*+B'p*~Cp+ D/, (7.4)
where
A'=A, B'=B-—4, (1.5)

C'=C—34, D'=D—-2B+2.

The transition boundaries for tangent and period-dou-
bling bifurcations are given by setting p = +2in (7.3) or
A= +1in (7.1}

A=+1 A—B+C—-D/2= +1, (7.6)
A=—~1 A+B+C+D/2= —1.

These hyperplanes intersect in the two-plane
2B+D+2=0, A+C=0. (7.7)

The transition boundary for Krein collisions is given by
setting the discriminant A(Q) = 0. This may be accom-
plished by means of a theorem from the classical theory of
equations. The “resolvent cubic” R(y) is defined by'’

R(y)=y'—B'y’+(4'C'—4D")y
—(4”D'—4B'D’' +C™). (7.8)
It may then be shown that
A(R) = A(Q). (7.9)
The discriminant of (7.8) is
A(R) = — (4’ + 274%), (7.10)
where
p=A'C' —4D' —B'*/3 (7.11)
and
g=D'(8B'/3—A4"%)
—C”?+A'B'C'/3—-2B"”/27 (7.12)

are the coefficients of the reduced cubic. Setting A(Q) =0
then yields the desired result, in terms of primed variables,

4[B?/3+4+4D'—4'C')?
=27[D'(8B'/3—A4"%)

+A'B'C'/3—-C"?—2B"/27]3 (7.13)
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which may alternatively be obtained by the method outlined
in Appendix C.

Thus the transition boundary for Krein collisions is a
sixth-degree, three-dimensional hypersurface embedded in
the four-dimensional space of coefficients (4,B,C,D).
Whether or not a spectrally stable system satisfying (7.13) is
actually on the boundary of stability depends again on the
Krein signatures.

A new feature of the eight-dimensional case is that sta-
bility can be lost by Krein collision without the discriminant
(7.10) becoming negative. This is because (7.10) is the
equation for a double stability index, which includes more
situations than Krein collisions when 27> 8. In particular, it
also includes collisions of complex quadruplets off S !, that is
P1=pPa2p3 = ps = pT. The condition for two double stability
indices p; = p,, p3 =p4 is

C?=A4"D', A% =44'B’' —8C". (7.14)
This forms a two-dimensional surface embedded in the
three-dimensional hypersurface (7.13). It has two parts,
corresponding to double quadruplets and to two double
pairs. They meet in the special case of a pair of quadruple
eigenvalueson.S ' withp, = p, = p; = p, (real) given by the
one-dimensional curve:

D' '=(4'/4), C'=A47/16, B'=34""/8, (7.15)
which lies on the surface (7.14).

Thus if the signature has m_ =m_, it is possible to
make a transition from spectral stability to instability via
(7.15), with the discriminant (7.13) remaining zero after
the transition case if the system remains on (7.14) or becom-
ing positive again by forming two complex quadruplets.

It turns out that a map on (7.14) has double quadru-
plets iff

D’'>(4'/4)", (7.16)
but we still require a test to determine whether a map cross-
ing (7.13) via a point on (7.15) loses stability or not.

The stable region is invariant under reflection about the
B'D’plane:4 '«> — 4',C’'— — C'. Thestableregionmay be
shown (Appendix B) to be bounded by

|4']<8, —8<B’'<24, |C'|<32, |D'|<16, (71.17)
and each of these bounds is optimal. But they do not elimi-
nate all unstable polynomials in £,; some cases with two
quadruplets remain. We must use Sturm’s method to obtain

a complete answer.
For (7.4) Sturm’s sequence is

Fop) =p*—4'p*+Bp’—~Cp+ D',
Fi(p) =4p> —34'p*+2B'p—C/,
Fy(p) = — Fp* — Ep— P,

Fi(p) =Hp+ 1, (7.18)
Fyp)=P—1J,
Gi(p) =p/4 —A'/16,
G,(p) = —4p/F— G,
G;(p) = —Fp/H + J,
where
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F=B'/2 —34"%/16, E=A'B'/8 —3C'/4,
P=D"—A4'C'/16, G= —(34' —4E/F)/F,
H=GE—-2B'+4P/F, I=GP+C/, (7.19)
J=(—E+IF/H)/H.

Applying the results of Sec. II F we find that the map is
spectrally stable iff

16 +4B'+ D'>{84' +2C’|
[124' + C’|<32+ 4B/,

2|E|< — P — 4F, (7.20)
\I |<2H,
P>IJ  (A(Q)>0).

VIil. CODIMENSION AND UNFOLDING OF SYMPLECTIC
MAPS HAVING DOUBLE EIGENVALUES ON THE UNIT
CIRCLE

It was shown in Sec. III that a Krein collision,
p1=p.€( — 2, + 2), can never precipitate unstable motion
if the corresponding Krein signature is positive or negative
definite. If the signature is mixed, then Moser showed that
destabilization is possible under appropriate perturbation.
However, this leaves open the question of whether destabili-
zation is likely. A preliminary question is whether collision
itself is even likely.

In this section we employ some concepts of singularity
theory®*? to quantify the likelihood that eigenvalues mov-
ing on S ! will collide and to analyze how the eigenvalues will
move for maps near a collision case. We begin by recalling a
few definitions.

Definitions: Given a submanifold N embedded in a
manifold M, the codimension of N in M is codim N

= dim M — dim N. It is the dimension of any complemen-
tary space to the tangent space at any point of N.

Two submanifolds ¥, and N, of a manifold M are trans-
verse at a point L of intersection if the sum of the tangent
spaces to NV, and NV, at L together span the tangent space to
MatL.

An unfolding of a point L, on a submanifold N of a
manifold M is a differentiable family L (u ), with ueR™, for
some integer m, and L(0) = L,

The unfolding L (u) is transverse to N at L, if the sum of
the range of the derivative dL /du and the tangent spaceto N
span the tangent space to M at L,

The unfolding L(u) is minitransversal ** if it is trans-
verse to IV at L, and m = codim N.

Some authors (e.g., Lu®*) use the term “universal” for
our “minitransversal,” but we follow Arnol’d?? who reserves
“universal” for an unfolding L (1) for which, given any oth-
er unfolding L ‘(v), there exists a unique differentiable pa-
rameter map v—gu such that the L'(v) is equivalent to
L (u(v))under the equivalence relation of interest. Universal
unfoldings in this sense do not exist for our problems.

A. Summary of results

We shall prove the following results in Sec. VIII B.
(1) The subsets of symplectic maps (in arbitrary dimen-
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sion 2n>4) having a double eigenvalue A # + 1 on S' and
diagonal Jordan normal form (JNF) and positive or nega-
tive definite or mixed signature each have codimension 3.
Thus one is unlikely to encounter such cases in one- and two-
parameter families. In particular, from Krein’s theorem the
INF is always diagonal for eigenvalues of definite signature.
For example, one- and two-parameter families of 4-D sym-
plectic maps with definite signature are unlikely to contain
any cases with (4,B) lying on the parabola in Fig. 2.

(2) The case of a double eigenvalue A # 4 10on S ' with
nontrivial JNF, however, has codimension 1, and can there-
fore occur robustly in one-parameter families.

(3) The case of a double eigenvalue + 1 has codimen-
sion 3 for diagonal JNF and codimension 1 for nontrivial
JNF.

(4) For minitransversal unfoldings of these cases there
is a smooth reparametrization u such that the relevant stabil-
ity indices evolve as follows.

(a) Definite signature:

(P2 —p1)? =i +p3 + 45 (8.1)
(b) Mixed signature, nontrivial JNF:

(P2 —p1)* =py (8.2)
(c) Mixed signature, diagonal JNF:
(p—p)? =pi — s — 143 (8.3)
(d) Double eigenvalue + 1, diagonal INF:

p=+ Q+ut—p; +pd). (8.4)
(e) Double eigenvalue + 1, nontrivial JNF:
p=+Q2+u). (8.5)

Consequently, typical one-parameter families ap-
proaching a case with a double eigenvalue of definite signa-
ture have an “avoided collision” (p, —p,)* = u* + 8 for
some real 8 0. The eigenvalues approach each otheron S/,
but reach a minimum separation and then move away. How-
ever, typical one-parameter families containing a case with a
double eigenvalue of mixed signature with nontrivial JNF
have a parabolic collision of eigenvalues on S, separating
parabolically as a quadruplet. One-parameter families pass-
ing near a case with a double eigenvalue of mixed signature
and diagonal JNF can do various things. One possibility is a
“bubble of instability,” in which the eigenvalues collide on
S'!, split off as a quadruplet, but then recombine on S !, again
splitting as two pairs on S '. Conversely, a quadruplet can
have a “bubble of stability,” combining momentarily on S’
where they split off as two pairs and subsequently recombine
and split off S'! as a quadruplet. Avoided collisions are also
possible in this case. We leave it to the reader to make the
analogous predictions for the cases of eigenvalues + 1.

One can also deduce the form of the stability diagrams
for typical two-parameter families passing near case (c).
The set with a double eigenvalue is the cone u3 = 3 + u3,
so that typical 2-D sections are as sketched in Fig. 5(a), but
Fig. 5(b) is not stable to perturbation.

Many symplectic maps L occurring in physical applica-
tions are reversible, i.e., there exists a map R with the proper-
ty that R 2 = (RL)? = I, and which reverses the symplectic
form. We show in Appendix D that coordinates can be cho-
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FIG. 5. (a) Two robust possibilities for stability diagrams in two-parameter
families of symplectic maps near a case with a double eigenvalue of mixed
signature with diagonal Jordan normal form. (b} A nonrobust stability dia-
gram in general, but robust for two-parameter families of reversible maps.

sen such that R(q,p) = (g, — p). Then, in the space of such
matrices, the codimension of all the above cases having codi-
mension 3 drops to 2, so that they are a little less unlikely to
occur. Minitransversal unfoldings are now 2-D; one obtains
the same results as before, but with u; = 0 in each case. The
main change is that Fig. 5(b) becomes a robust stability
diagram for two-parameter families with mixed signature.
These results directly parallel those for the eigenvalues of
equilibria of Hamiltonian systems, !%2!

B. Calculation of codimension and unfolding

In this subsection we provide proofs for the results sum-
marized in the previous subsection. It will prove useful to
represent canonical transformations by *‘Poincaré generat-
ing functions of the second kind,” S(x — x'), for which?*%

x+x' = —JDS(x-X), (8.6)

where x = (q,p) and derivatives are taken with respect to
the difference variables x — x'. Provided

det(J-D3S —I)#£0 (8.7)

[which is in fact equivalent to det(J-D2S + I) #0] these
relations generate a symplectic map x’ = M(x), locally. Ev-
ery symplectic map with a fixed point with no eigenvalue
A = + 1has such a generating function locally. For the lin-
earization L = DM at a fixed point, taken to be at the origin,
(8.6) becomes

X+x'=—JDS(x—%'), (8.8)
where D 2S is the 2n X 2n Hessian matrix
S S
DS = [ “ q"] (8.9)
SP‘] SPP

evaluated at zero.
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The generating function S(x — x’) is particularly well
suited for treating reversible maps, as will be seen.

The eigenvalues A, of L are given by the characteristic
equation

det(J-D3S + kI) =0, (8.10)
where
k=1 +24,)/(1-4,). (8.11)

Note that since + k correspond to4 andA !, the character-
istic polynomial will be a function of k 2 alone.

The total Krein signature is easy to read off from the
generating function, as follows.

Lemma: For the linear map x’ = Lx generated by (8.8),

S(x—x") —S5(0) = [x,Lx]. (8.12)
Proof:
S(x —x') —8(0) =4{(x—x)"D?S" (x —x). (8.13)

Premultiplying (8.8) by (x — x’)T-J then yields
(x—x)'DS (x—x)=x—-x)TJ (x+x)
= 2x7Jx/, (8.14)

which establishes (8.12). Q.E.D.

Thus since x — x — X’ is invertible (L has no eigenvalue
+ 1) the quadratic form [x,Lx] is equivalent to the Poin-
caré generating function S(x — x') for the tangent map, so
that in particular the Krein signature is the signature of S.

Next we use this Poincaré generating function represen-
tation to calculate the codimension of the subset of symplec-
tic maps having a double eigenvalue on S'', with definite or
mixed signature, diagonal or nontrivial JNF.

1. Definite signature

Williamson®® showed that if a symplectic map L has a
double eigenvalue A on S ' with definite signature (without
loss of generality + + ), then coordinates can be found on
the subspace ¥, to cast L into a certain normal form, corre-
sponding to the generating function

S(ap) =k*(qi +pi + 45 +p3)/2 (8.15)
with k = (1 + A1)/(1 — A). Let us restrict our attention to
L, = L |V,; the other eigenspaces play no role. We also de-
fine the orbit of L, under the group Sp(4) of 4-D symplectic
matrices,

OL,) ={TL,T~": TeSp(4)}, (8.16)

that is, the equivalence class of L, under symplectic coordi-
nate changes.

The generating function for TLT ~'is SoT ~'. The orbit
O(L; ) is asubmanifold because (i) it is an algebraic variety,
as it is given by polynomial equations in terms of generating
functions, and (ii) it is homogeneous, because it is a group
orbit. The desired quantity is then the codimension of the
union over A&S '\ { & 1} of the orbits O(L; ):

Xt = U O(Ly). (8.17)

It suffices to evaluate the codimension of the tangent
space to y** at L,. All symplectic coordinate changes T:
x - X' near the identity can be generated by the ‘“Poincaré
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generating function of the first kind,” 7(x + x'), in terms of

which

x —x' =JDr(x +x'). (8.18)
For the linearization at a fixed point, again taken at the ori-
gin,

Xx—x = —JD’(x+Xx), (8.19)

where D *7 is evaluated at the origin. Conversely, any qua-
dratic function 7(x + x') satisfying (8.7) yields a linear

symplectic map, in this case avoiding eigenvalues 4 = — 1
rather than + 1. Itis also well suited for dealing with rever-
sible maps.

To first order in 7,
x=T"=U—-2D%)x. (8.20)

Using (8.20) in (8.15) and multiplying out, with
x' = (Q,P), we find, to first order in 7,

SoT ~1(Q,P)
=1k’ [QT +PI+ Q3 +P3
+47,, (P} — Q%) +47,, (P} —02)
+4(7,, — Tpp, YL+ 4Ty, — Tpp, ) OoPs
+4(7,q, + Tpg ) (PP — Q10)

+4(7gq, — Tpp, ) (@iP> + QP ] (8.21)

As 7 varies, this yields a six-dimensional space of generating
functions embedded in the ten-dimensional space of all 4-D
generating functions, so that the orbit O(L, ) has codimen-
sion 4. Taking the union over A (or equivalently, over k)
shows that y** has codimension 3, as claimed in Sec.
VIII A above.

This result implies that in one- or two-parameter fam-
ilies, two eigenvalues on S ! with the same signature are un-
likely to collide. To find out what they are likely to do in-
stead, let us examine the effect of adding a general
perturbation s(x) to (8.15). Since + k are both roots, we
know that the characteristic Eq. (8.10) has the form

k*+Bk*+C=0, (8.22)
where B = det D %S and
J-D*S, J-D’S,
c=3 i i (8.23)

& |7-D%s, J-Ds;|"

We find that the discriminant A = B* — 4C vanishes to first
order in s. Retaining second-order terms and diagonalizing
the resultant quadratic form gives

— L4 2
A=k [(sq.th + S0, T Sa:0, — Spups )

+4(Sp g + 55 )+ 4, — S, 0%]- (8.24)

Examining the formula (8.21) for the tangent space to
O(L, ) shows that an unfolding S + s,, is minitransversal iff
it depends on three parameters, say u, i, &5, and

(B1stastt3) = (Sg.0, F Spp, — Sgr, — Soupas
2(sq.qz + S, )s 2(Sq.pz — Sq.p, )) (8.25)

is a diffeomorphism at 0. Since A is to second order in p a
nondegenerate quadratic form, it follows by the Morse
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lemma® that there is a diffeomorphic reparametrization
such that

A=pf +p3 443 (8.26)

This establishes the claims made in Sec. A about the behav-
ior of eigenvalues, for the case of definite signature.

If one wants to restrict attention to reversible maps, we
show in Appendix D that we can always take the reversor to
be R(q,p) = (q, — p). It is readily shown that for the two
Poincaré generating functions employed above, the resultant
maps are reversible with respect to this reversor iff
S(q,p) = S(q, —p) and 7(q,p) = — 7(q, — p), respective-
ly. It follows that the space of generating functions S reversi-
ble with respect to R is only six dimensional, and from
(8.21) that the orbit of L; under symplectic coordinate
changes preserving R has codimension 3. Thus, taking the
union over A, we see that the existence of a double eigenvalue
on $! with definite signature is only codimension 2 in the
space of reversible symplectic maps. Furthermore, the third
term in (8.24) is zero for reversible unfoldings, and the be-
havior of eigenvalues in a minitransversal family is given by

A=pi+ps

2. Mixed signature

In the case of a double eigenvalue on .S '\ { + 1} having
mixed signature and nontrivial Jordan normal form, Wil-
liamson obtained the normal form with generating function
(actually, an equivalent one):

S(a,p) = k*(g.p, — qp>) +ap?, ka#0. (8.27)

In this case we can evaluate the codimension and unfolding
in a simpler fashion. Add a general perturbation s(q,p). One
then finds that the discriminant of the characteristic polyno-
mial (8.10) is, to first order in s,

A = 4k ‘as

- (8.28)
Since k *a 50, the implicit function theorem guarantees that
the set of maps with A = Oislocally a codimension 1 surface.

Exceptionally, a = 0; this is the case of diagonal Jordan
normal form. We then have to use the same method as for the
case of definite signature. We could use the normal form
(2.27) with @ = 0 but we prefer an alternative normal form
for this case:

S(qp) =k*(q} +pt —q3 —p3)/2. (8.29)

As in the definite case, one finds that the orbit of L, (the
map generated by 8.29) has codimension 4, thus

x*T=_ U

AeS"\{+ 1}

O(L;) (8.30)
has codimension 3. For a general perturbation s(q,p) of
(8.29), one finds to second order in s that the discriminant of
the characteristic polynomial is
A=k 4[ (S4q + Spip, + 54,0, + Sp.p, )?
_4(sq.q2 _sp.pz)z_4(sq.pz +sq2p. )2]' (8.31)

From the formula for O(L,) it follows that an unfolding
S + s,, is minitransversal to y* ~ iff it contains three param-
eters and
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(K15t 3) —’(sq.ql + S0 T 500, T Spup,o

2(Sqqs = Sopa)r 2(Sgp, +550))  (8.32)
is a diffeomorphism at 0. Applying the Morse lemma?®? once

again, we see that a diffeomorphic change of parameters can
be found such that

A=pt —uf —ui. (8.33)

Again, in the reversible case the codimension drops to 2
and minitransversal families can be reparametrized such
that

A=pu?—ps (8.34)

3. Double eigenvalue + 1

This subsubsection was inspired by work of Chilling-
worth and Afsharnejad®” on the Mathieu equation. Double
eigenvalues + 1 are essentially a 2-D phenomenon, so we
need only consider matrices

& 2]

C D

with AD — BC = 1. We could use generating functions, but

the 2-D case is simple enough that we can manage without

them. Diagonalizing the quadratic form AD — BC, we see

that this set forms a hyperboloid in the space of 4,B,C,D:

(A4+D)>—(4—-D)Y -~ (B+C)+(B—-C)*=4.
(8.35)

The eigenvalues are determined by the trace (stability in-

dex) p = A + D. The subset of matrices with a double eigen-
value + 1 is given by

A+D=2,
(A4—-D)*+ (B+C)=(B-C)?,

which is a two-dimensional cone. The vertex is the identity
matrix, all others having nontrivial Jordan normal form.
Thus existence of a double eigenvalue + 1 with diagonal
Jordan normal form is codimension 3 in the space of sym-
plectic maps.

From (8.35), minitransversal families have a reparame-
trization (g ,,1,,45) such that the stability index

p=24p —u; +us (8.37)
The case of nontrivial Jordan normal form is codimension 1

and minitransversal families have a reparametrization y,
such that

(8.36)

p=24+u,. (8.38)
Reversibility with respect to
R [1 0]

0 —1

is obtained iff A = D (Ref. 28). Thus, existence of a double
eigenvalue + 1 with diagonal Jordan normal form is only
codimension 2 in the space of reversible symplectic maps,
and minitransversal families have a reparametrization such
that

p=2+ui —u;. (8.39)
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The analysis for a double eigenvalue — 1 is analogous,
but with the sign of p changed throughout.

C. Further remarks

There are other cases whose codimension and unfolding
might be worth finding, for example existence of a quadruple
eigenvalue + 1or — 1, and existence of triple eigenvalues A,
A*on S, with A # + 1, with the various possibilities for
Jordan normal form and signature. But the ones we have
treated are, we believe, the major cases of interest.

Finally, it is worth remembering that whereas families
of linear symplectic maps may cross the ‘“‘saddle-node”
boundary quite freely, a typical unfolding of a nonlinear map
with a periodic orbit having an eigenvalue + 1 has a saddle-
node bifurcation there. For one sign of the parameter there
are two periodic orbits with stability on opposite sides of the
saddle-node boundary. The periodic orbits collide paraboli-
cally and annihilate each other.?® In the reversible families,
however, symmetry breaking is a persistent alternative.*®

IX. DISCUSSION

A general method has been presented which reduces the
calculation of the eigenvalues of a symplectic matrix of di-
mension 2 to solving a “reduced characteristic equation” of
degree n. This not only greatly simplifies the calculation of
eigenvalues, but also makes it possible to obtain explicit
spectral stability limits in terms of the coefficients of the
characteristic polynomial for symplectic maps of arbitrary
dimension, using Sturm’s method. This has been done here
in detail for dimensions 2, 4, 6, and 8.

Stable symplectic maps have all their eigenvalues on the
unit circle. In order to lose stability some of them must col-
lide. According to Krein’s theorem, however, colliding
eigenvalues with definite signature and A # + 1 are con-
strained from leaving S ', because the definite conserved qua-
dratic form (3.2) is incompatible with unstable motion. Cal-
culation of the signature turns out to be fairly
straightforward for 4-D maps, but requires calculating the
invariant subspaces for each eigenvalue pair for 6-D and 8-D
maps. In the case of mixed signature stability may or may
not be lost. However, examination of the possible unfoldings
show that in the definite case, one- and two-parameter fam-
ilies are unlikely to even reach the boundary for Krein colli-
sions. Collision in the case of mixed signature, on the other
hand, is codimension 1 for nontrivial Jordan normal form,
and destabilization is typical.

The stability boundaries derived in this paper are of in-
terest both in physical problems and “pure” mathematical
studies. We expect their greatest utility will lie in orbital
calculations for particle accelerators, which entail comput-
ing the eigenvalues of a great many 4-D or 6-D matrices.
However, the potential user of these results is cautioned to
calculate the Krein signatures as well as the eigenvalues, in
order to fully determine the stability properties of the maps.
In this connection it may be useful to observe that signatures
may be calculated inside as well as on the stability boundary,
since they are conserved under continuous perturbations,
provided that the eigenvalues avoid + 1. Another applica-
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tion is the search for period-doubling sequences in six- and
eight-dimensional maps, similar to those recently discovered
in four-dimensional maps.'” The stability boundaries de-
rived in Secs. VI and VII should prove useful in locating
appropriate initial conditions for such sequences.
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APPENDIX A: FORMULA FOR THE DISCRIMINANT

The discriminant of a polynomial Q can be evaluated
directly from the coefficients of Q without having to find the
roots p,."” Define the Newton coefficients

Sp = ZP:C

These can be evaluated in terms of the coefficients 4 ; of Q
(2.13) by Newton’s identities:

(A1)

§o = n,

S —A s 4+ "'+(_)k_1A1’<—151
+(—)Yka;, =0, 1<k<n,

S —ASe_1++(=)Als,_,=0, k>n,

(A2)

where 7 is the degree of Q. Then the discriminant A(Q) is
given by the determinant

So Sy T S
5, s, - s

d, = i (A3)
Sp_a MR T

We conjecture that the leading coefficient of F;(p) in
Sturm’s method is given in terms of the Newton coefficients
by
(A4)

()

! '

N <1
but have not proved it in general. In particular, it would
follow that F, is the discriminant divided by the square of a
polynomial in the coefficients, hence they would have the
same sign.

APPENDIX B: ABSOLUTE BOUNDS ON THE STABILITY
REGION

In this appendix we derive the absolute bounds (2.18)
on the stability region in the space of reduced characteristic

polynomials.
To find the extrema of
4, = z Pi, P, (BD)

Iy < - <i,<n
over the hypercube |p; | <2 real, it suffices to look at its values
at the vertices, p; = + 2, since 4 /, is affine in each p; sepa-
rately:
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AL =p, Py P,

I<iy< "<y _<n—1

+ Z Pi," P, (B2)

I<h < <ip,<n—1
The upper bounds on 4 ;, in (2.18) come from taking all p,
= + 2. When m is odd, the lower bounds come from taking

allp, = — 2.
For m even, the lower bounds can be obtained as fol-
lows. If there are n_ rootsp= —2andn, rootsp = +2

(n_ + n, = n) then counting arguments show that 4/, is
2" times a sum of products of binomial coefficients which
one can recognize as the coefficient of x™ in

JSx) =1 =x)" (1 +x)". (B3)
Thus

Al =2"f"(0)/ml. (B4)
For example,
A5 =2((An)*> —n), (B5)
A;=12[3n(n—2)— (6n—8)(An)> + (An)*],  (B6)
where

An=n,_,—n_. (B7)

The minimum of A4/, over the stability region is then given
by minimizing (B4) over An.

An alternative set of absolute bounds on the stable re-
gion is provided by the following optimal bounds on the
Newton coefficients (Al):

0, k even

B8
—n2% k odd (B8)

}<sk <n 2%,

APPENDIX C: GEOMETRY OF 6-D STABILITY REGION

We present here additional details on the structure of
the 6-D stability region illustrated in Fig. 3. Explicit formu-
las have been derived in Sec. VI for the quartic surface and
the two planes that bound the stability region, defined by
existence of a double stability index p, = p,, and stability
indices + 2. The edges and corners may be obtained from
the coincidences of these conditions, which are most easily
found by writing

Q(p) = (p—p1)p —p2)(p —p3) (C1)
and matching coefficients with those in (6.4) to obtain

A =p1+p2+pP3
D=p,p,+pips+p2p3 (C2)
E=p,p:ps

These equations can also be used to find the quartic surface
and the values of the double root p, = p, and the third root
ps on it. A less direct method is to solve Q(p) =0 and
Q'(p) = 0 simultaneously.

We now use Egs. (C2) to derive explicit expressions for
all the edges and corners of the stability region.

1 =p>=p;- This yields the cusped ridge (6.12). Equa-
tions (C2) show immediately that 4 = 3p,, D = 3p3, and
E = p3 serve to define the ridge parametrically and show
that p = g = 0 there (6.9).
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p;=p>= + 2: The quartic surface and the p= 42
plane are tangent along the lines (6.13) and (6.15), respec-
tively, on which p; = A T 4. The equations for the lines fol-
low directly from Eqs. (C2) by eliminating p,. Regarding
tangency, we prove the somewhat more general result that
for all p the quartic surface is tangent to the plane where
there is a root p at the line of two roots = p.

Proof: The plane where there is a root p, has equation
Q(p,) = 0,s0if (4,,D,,E,) is one point on it, then it is given
by

p*AA —pAD + AE =0, (C3)

where A4 = 4 — A, etc. For the tangent plane to the quar-
tic surface, set p, = p, in (C2) and differentiate with respect
to p, and p,. One finds

A = ZAPI + APs’
AD = 2(P1 +,03)AP1 + 2P1AP3,

AE =2p, psAp; + pi Aps,
to first order. One easily checks then that (C3) is satisfied
for all Ap,, Ap,. Q.E.D.
pr=p2 p;= £ 2: The quartic surface intersects the
p = + 2 planes transversely along the space curves

A?+4=2C, (C5)

along which p, = A4 /2 I 1, respectively. The proof follows
directly from Egs. (C2).

p; =2, p,=—2: The two tangent planes intersect at the
line C = — 24, B= — 1, along which p; = 4. Again, the
proof is straightforward.

Triple coincidences are also easily found from (C2). We
consider the form of the stability region near the tops of the
spires.

p1=p>=p;= + 2: The tangent line p, =p, = + 2, in-
tersection curve p, = p,, p3 = =+ 2, and the cusped ridge all
intersect tangentially at the point (4,B,C)

= (£ 6,15, 4 20). We give the proof for p = + 2. From
(6.13) tangent vectors to the tangent line have
(A4, AB, AC) « (1,4,6). From (6.14), tangent vectors to
the intersection curve have

AC=AAA,
AB=A+AC/2=(1+A4/2)A4;

setting 4 = 6 then gives (A4, AB, AC) « (1,4,6). Finally,
tangent  vectors to the cusped ridge have
(A4, AD, AE) « (3,6p,,3p7) < (1,4,4) for p, = +2, so
(AA4, AB, AC) « (1,4,6) again. Q.E.D.

As we advance upwards in B, the cusped ridge curls over
like a breaking wave, as shown in Fig. 5. We now show that,
in the limit as B— 15, the tangent plane to the surface at the
ridge becomes parallel to the p = 2 plane.

Proof: Expanding the quartic surface (6.10) to second
order about the ridge, we obtain to second order,

AE —3E D|| A4
—3E D —A|| AB|=0.
D —A 3] LAC

(C4)

(C6)

[A4 AB AC]
c7)

Diagonalizing this quadratic form, we find, to second order,
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AE(AA — 3AD /A + DAE /4AE)* = 0. (C8)
The tangent plane at the ridge is therefore
A4 —3AD /A + DAE/AE = 0. (C9

At the peak, 4 =6, D =12, and E =8, so that (C9) be-
comes

A4 — AD /2 + AE/4 =0, (C10)

which is easily seen to coincide with the p =2 plane
(6.6). Q.E.D.

APPENDIX D: NORMAL FORM FOR REVERSORS

A symplectic map T is called reversible if there exists a
map R (called a reversor) such that R? = I, (RT)> =1 (so
that R “'TR = T '), and R is antisymplectic, that is

[DREDRm] = — [En] (DD)

for all tangent vectors &,m, where DR is the derivative of R.
We believe that by a symplectic coordinate change, R can be
put into the standard form

R(q,p) =(q, —p) (D2)

in a neighborhood of any fixed point of R. We will prove this
here for the linearization only, as that is all we need in the
present context.

Proof: R * = Iimplies that the space can be decomposed
as V, & V_, with

Rv, = +4v Y v, eV,
+ + +SV 4 (D3)
Rv_= —v_ Vv_eV_.
Then R  antisymplectic implies that [v,w,]

=[v_,w_1=0,Vv, w eV, v_w_eV_.Choose a basis
(' )i_y.;, forV oand (v ),_,.,_ for V_. The sym-
plectic form is nondegenerate, so 3 v’ such that
[v) ' ]#0. Now permute the basis for ¥_ so that

Ll
[vl vl ]#0and subtract [v! v’ Jol /[v] ,v! ] from
v. to achieve [v) w’ ] =0, i>1. Similarly, subtract
[vi vl v, /[viwl] from ) to obtain
[vi w1l ] =0,i>1. Proceed by induction. We cannot run
outof v’ beforev’ or vice versa because then the symplec-
tic form would be degenerate. Thus i, =i_ and the new
basis puts the symplectic form into the cannonical form

[v% W’ ] =6, and R into the desired form. Q.E.D.
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In Hirota’s [Hiroshima University Technical Report Nos. A 6, A 9, 1981; J. Phys. Soc. Jpn.
50, 3785 (1981)] bilinear difference equation which is satisfied by solutions to the
Kadomtsev—-Petviashvili (KP) hierarchy, gauge and dual symmetries are found, which enable
one to reduce the problem of solving the nonlinear equation to solving a single linear equation.

I. INTRODUCTION

In studying nonlinear integrable systems it is useful to
find their similarities and investigate them from a unified
point of view. Along this line one of the present authors
studied' a nonlinear equation which was derived from the
Toda lattice through a transformation of independent vari-
ables. It reduces to the KdV equation and to the Toda lattice
itself in certain respective limits of a parameter. This gener-
alized Toda lattice itself was shown to be integrable in all
range of the parameter.

Based on the same viewpoint Hirota proposed” an equa-
tion which reduces into various types of soliton equations in
some limits of appropriate combination of independent vari-
ables. Among them are the KdV equation, Kadomtsev—Pet-
viashvili (KP) equation, modified KdV equation, sine-Gor-
don equation, Toda lattice, two-dimensional Toda lattice,
etc. He also gave three-soliton solutions and conjectured the
integrability of the equation.

A further interesting observation was made by Miwa®
who found a transformation of independent variables which
connects Hirota’s equation and the hierarchy of the KP
equation. The latter equation has been studied intensively by
many authors.* It contains an infinite number of soliton
equations whose solutions have been classified completely
by mathematical terms. This offers a typical example which
shows the importance of the view described above.

Besides these soliton equations there have been known
equations which are characterized by the gauge symmetry
and an infinite number of solutions have been given under
certain conditions. The Yang—Mills theory and the Einstein
equation of gravity belong to this category.® The gauge sym-
metry plays an essential role in these theories. It is, therefore,
desirable to formulate the soliton equations by means of the
gauge theory.

For the purpose to establish such a formalism we like to
study Hirota’s equation within the framework of the gauge
theory in this paper. In our formalism Hirota’s equation
emerges as a compatibility relation of a pair of equations for
a field which are covariant under gauge transformations.
Therefore the gauge symmetry appears as a hidden symme-
try of the nonlinear equation. Another combination of this
pair of equations yields a linear equation for the field. The
pair of equations was called the duality equations in our pre-
vious article® in which a special limit of Hirota’s equation,
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i.e., the two-dimensional Toda lattice, was studied along the
same line of the present paper.

The most remarkable feature of the duality equations is
that they are symmetric under the exchange of the roles of
the gauge field and the amplitude field. This dual symmetry
implies that the amplitude field itself satisfies Hirota’s equa-
tion. An important consequence of this property is that this
scheme provides a kind of Backlund transformation which
enables us to generate a new solution of the nonlinear equa-
tion from a given solution of it, just by solving the single
linear equation derived from the duality equations. In other
words the problem of solving the nonlinear equation is re-
duced to solve the linear equation associated to the nonlinear
equation.

It has been already shown’ how this scheme works in the
case of the two-dimensional Toda lattice which can be ob-
tained from Hirota’s equation in particular limits of param-
eters. There are some examples of solutions, which satisfy
both the nonlinear and the linear equations simultaneously,
that were given,” although no attention was paid to their
gauge symmetric nature. Qur present work claims that this
scheme can be generalized to include all of the nonlinear
equations described by Hirota’s equation.

Il. GAUGE AND DUAL SYMMETRIES

Hirota’s equation is given by?
af(A+lLuv)f(Ad—1Luy)

+Bf(Ap+ 1) f(Au —1v)

+yvfAuv+ 1) f(Auv—1)=0. (D)

As proved by Miwa,” this equation is satisfied by ~ functions
of the KP hierarchy.

Toinvestigate gauge properties of Eq. (1) we first define
covariant difference operators by

V. f,(m) =exp(— AL (Im))f,(I+ 1,m)

—fu (bm), (2a)
V_fi(bm) =exp(—A7_, (Lm))f, (Lm + 1)
—~fo(m). (2b)
The gauge transformation should be defined by
S (Lm) —exp(V, (L,m)) f, (I,m), (3a)

AL (Lm)~A (Lm) + V, (I + 1,m) —V,(I,m), (3b)
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ATUmy A7 (Um)+V,(Um+1) -V, (m). (3c)
ThenV , f, (I,m) transforminto exp(V,, (,,m))V , f, (I,m)
provided V, (I,m) satisfies
V,(m+1)—V,(m)

=V, . Um+1)—V, _, (m). (4)
We restrict our discussion to the case in which the gauge
field can be represented by the following expressions:

Al (m) =1In(g, (I + 1,m)/g, (I,m)), (5a)
AT (Lm) = In(g, (m + 1)/g, (Lm)). (5b)
Now we introduce the duality equations by
V. fihm) =c (g,_,(Lm)/g, (I + 1,m))
Xf 1 U+ 1,m), (6a)
V_f,Um)=c_(g,(Um)/g,_,Um+ 1))
Xfo_ 1 (Lm+ 1), (6b)

where ¢ | are arbitrary constants. These equations will be
compatible if the commutator [V _,V_], calculated in two
ways agree with each other. First from definitions (2a) and
(2b) we obtain

V+V—fn(lsm)
— gn(IYm)gn~l(l+ lsm)
gn(l+ lym)gn—](l+ lym + 1)
g, (I,m)
- /[, ({+ 1Lm)
g, (I +1,m) /
gn~l(l’m)

_ &) hm 4 1)+ £, (Lm)
PR /

LU+ 1m+1)

and

V—V+f;1 (lim)
gn— 1 (l’m)gn (l’m + 1)

= Ld+1Lm+1)
g1 Um+1Dg, U+1m+1)

g, (I,m)
_— I+1,
e g Loy HLm)

w1 (Lm)
B Y e hm 4 1) 4 f, (L),

gn—l(l’m+1) (7b)

which yield
g, (Im)g, U+ 1m)
g.U+1m)g, (U+1m+1)

_ 8n_1UUm)g, (Im+1) )
g 1 Um+Dg, (U+1m+1)

(8)

(V.17 (im) =(

Xf U+ 1L,m+1).

Another expression of the commutator can be derived from
(6a) and (6b) as follows; using Eq. (6b), we can write

V. .V_f,Um)
Im
_ va+(L
gu(Im+1)
which can be rewritten, by using the definition of V_, as

fn_l(l)m+ 1))5

(7a) follows:
|
8. (lm) g, (I+1,m) g, (I,m)
V.Yt = | [t ot 1) =8 ()
N gn(l+1,m) gn_1(1+1,m+l)f 1( gnAl(l’m_}.l)f !
gn (l’m) ( gn— 1 (l:m + l) )
=C_ I+ 1, ) —f_, U 1
cg,,_,(l,m-{—l) g,,_1(1+1,m+1)f"”1(+ m+1)—f,_(m+1)
g, (Im)
=c_——V_ f,_.(m+1).
gn—l(l7m+1) * !

In this form of the expression, Eq. (6a) can be used to obtain
V.V_f,(Im)

gn(l,m)gnfz(lym + 1)
g, Um+ g, U+1m+1)

=c,.c

Xf (U4 Lm+1). (9a)

Similarly, we obtain

gn—l(lym)gn+1(l+ lym)
g, U+ 1mg, U+ 1m+1)

Xf, U+ 1,m+ 1),
which leads, together with (9a), to

V_V. f,Um)=c,c

(9b)
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|
(v,.v_1/.(Im)
e c ( 8. (m)g, _,(Im+1)
g Um+ g, (U+1tm+1)
g, Um)g, . ,(U+1,m)

- U+ 1m + 1).
g. U+ 1m)g,(U+1m+1) )f
(10)

Putting (8) and (10) equal we see that the quantity
g, I+ 1m)g, (Im+ 1)

g, Um)g, I+ 1m+1)
gn+] (l+ 19m)gnfl(l,m + 1)
g, (Im)g,(I+1,m+1)

does not depend on n. Denoting this constant by — 3 /a we
obtain

—c,C_
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ag, I+ 1m)g, (Um+1)+Bg, U+ 1,m+ g, (I,m)
+ 78, U+ 1m)g, (Um+1)=0, (11)

wherey = — c¢_c_a. It will not be difficult to convince one-
self that this expression is equivalent to Hirota’s equation
(1) if one substitutes

I=A+p+v)/2, m=u—A4-—v)/2,
into (11). Hence we have obtained Hirota’s equation (1) as
a compatibility condition of the duality equations {6).

If we form the symmetric combinations {V,,V_} from
(7a) and (7b) and also from (9a) and (9b) and put them
equal we obtain the following linear equation of £, (/,m):
B g, (Lm)g, _ (Lm)

a g, (+1m)g, ,Um+1)
8. (m)
g, (I + 1,m)

n=v

LU+ 1m+ 1)

S U+ 1,m)

gn—] (l’m)
————f,Um+ 1) —f,(m) =0,
8n 1 (m+1)

(12)

when the coefficients of this equation are determined by a
solution of Eq. (11). The pair of equations (11) and (12) is
now equivalent to the pair of the duality equations (6a) and
(6b).

The gauge symmetry will be restricted to those satisfy-
ing
Vn+] (l"‘f_ lym) - Vn(l+ lsm) - Vn(l,m) - Vn_] (l)m))

(13)

if one requires covariance of the duality equations (6a) and
(6b).

The most striking feature of the duality equations (6a)
and (6b) is that we can rewrite them by exchanging the roles
of the fields fand g as follows:

V.8, (Lm)= —c_(f,(m)/f, . (Im—1))

X&u 41 (Lm—1), (14a)
V_g,(m)= —c (f, ., (m)/f,(I—1m))
Xg,_1(—1,m), (14b)

where the new covariant difference operators are defined by
V.g,(bm) =g, (Lm)
—exp(B),  (Lm —1))g, (Lm — 1),
(15a)
V_g,(m) =g, (Lm)
—exp(BL (I — 1,m)g, (I — 1,m),
(15b)
and
B (Lm) =n(f, (I + L,m)/f, (I,m)),
BT (Lm) =In(f, (Lm + 1) /f, (I,m)).

There is no need to repeat the same argument again. We see
that the field £, (/,m) in Egs. (6a) and (6b) itself satisfies
Hirota’s equation (1) as a compatibility condition of Egs.
(14a) and (14b). Therefore we call Eqs. (6a) and (6b) or
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equivalently Egs. (14a) and (14b), the duality equations in
the sense that they represent the duality relation between the
amplitude field and the gauge field.

Ili. LINEAR BACKLUND TRANSFORMATION

Now an important result emerges from this property. If
g, isasolution to the nonlinear equation (11) and f,, satisfies
the linear equation (12), then the duality equations (6a) and
(6b) are fulfilled, whereas the compatibility of (14a) and
(14b), which are nothing but (6a) and (6b) themselves,
requires for f, to satisfy the same equation as (11) with g,
replaced by £, . Namely, as we solve the linear equation (12)
for f, (I,m) whose coefficients are given by any solution of
Hirota’s equation (1), the solution itself satisfies Hirota’s
equation (1). In this way our duality equations enable us to
obtain a tower of solutions of the nonlinear equation (1),
just by solving the linear equation (12). This remarkable
feature owes much to the characteristic nature of the gauge
symmetric equations (6a) and (6b).

The situation might sound somewhat similar to the
Bicklund transformation of the Liouville equation.® The
complete set of solutions have been known to be given by the
solutions of a linear equation in the d’ Alembert form in both
ordinary Liouville equation® and its difference analog.’
Therefore the Biacklund transformation of this model con-
nects different equations. In general, however, it has been
believed® that soliton equations will not be reduced to linear
equations, in contrast to our present analysis.

There have been papers'’ about transformations which
relate one soliton equation to another. These are also called
the gauge transformations, but differ from one of ours. In
our procedure the gauge transformation described by Eq.
(3) connects one solution to another, thus offering a series of
solutions of Eq. (1) by the gauge transformations.

We should recall that Hirota’s equation (1) not only
contains many known integrable equations in their corre-
sponding limits, but all solutions to the KP hierarchy can be
shown to satisfy it by the transformation invented by Miwa.?
Therefore the results shown in this paper must be quite gen-
eral in integrable systems and the gauge symmetry should
play an essential role there. In this connection it is worth-
while to recognize the role played by the duality, or antidu-
ality, relation between the electric and magnetic fields in the
study of non-Abelian gauge theories.’

Finally we remark that equations similar to (6a) and
(6b) were already discussed by Hirota® as Bicklund trans-
formations. He, however, did not respect the gauge symmet-
ric nature of the equations and also did not derive the linear
equation (12). Therefore in his treatment the two equations
corresponding to Egs. (6a) and (6b) must be solved simul-
taneously in order to obtain a new solution through the
transformations.

The set of equations (6a) and (6b) was also used in Ref.
7 in the continuum limits of the variables / and m. There the
equations were regarded as recurrence formulas which gen-
erate differential equations of second order as well as the
two-dimensional Toda lattice.
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A general approach is developed for the derivation of conservation laws in continuum physics.
A Noether-type theorem is applied in connection with transformations which leave the action
functional invariant to within the integral of a divergence. Specific results are derived in the
case of fluid dynamics: the pertinent equations are considered within the Lagrangian
(material) description and are associated with a genuine variation formulation. The physical
meaning of the conservation laws is emphasized and the greater generality of the approach is

commented upon.

|. INTRODUCTION

Conservation laws constitute a basic tool in the analysis
of systems of partial differential equations. They can be ex-
ploited to gain information on the properties of the solutions,
to determine physical quantities which are constant in time,
and to make such theoretical constructions as, for example,
the derivation of the geodesic law of motion from the Ein-
stein field equations. In continuum physics the structure of
the governing differential equations and the associated pro-
cedure for determining conservation laws markedly depends
on whether the Lagrangian (material) or the Eulerian (spa-
tial) description is adopted. It turns out that the Lagrangian
description is especially fit for the derivation of conservation
laws. In this paper this feature will be emphasized just in the
case of fluid dynamics where the Lagrangian description is
by far less usual than the Eulerian one.

Our approach rests on the fundamental idea of
Noether’s theorem whereby conservation laws are related to
invariance properties of the given functional. Specifically,
the explicit determination of the infinitesimal symmetry
transformations that leave the action functional invariant
depends crucially on the fact that the Lagrangian (density)
is defined up to a divergence. Moreover, the invariance is
required to hold on the solutions to the field equations. On
the basis of these arguments, which trace back to Bessel-
Hagen,' we construct a very efficient algorithm leading to
the generation of rather general conservation laws (Sec. IT).

To illustrate the procedure through a specific applica-
tion, this paper deals with conservation laws for three-di-
mensional isoentropic fluid flows. As a matter of fact, con-
servation laws for such fluid motions have been extensively
investigated within the framework of the Eulerian descrip-
tion, namely by having recourse to Hamiltonian formula-
tions? or to the concept of symmetry transformation and its
connection with the generation of conserved currents.> In
addition, one-dimensional flows have also been examined by
using either the geometric methods of Estabrook and Wahl-
quist or other approaches (cf. Refs. 6 and 7). In our investi-
gation we benefit from a recent variational formulation for
isoentropic fluid motions® which involves the Lagrangian
description (Sec. IIT).
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Although the Lagrangian description might seem quite
unnatural in fluid dynamics, it is possible to find an infinite
set of independent conservation laws (Sec. IV) thus obtain-
ing a proper extension of known results about the corre-
sponding Eulerian description. In particular, it turns out
that the conservation laws involve arbitrary functions of the
Lagrangian coordinates. Another unexpected result is that
the infinitesimal generators of the invariance transforma-
tions so obtained-—referred to as divergence symmetries by
Olver’—exhaust the class of symmetry generators for the
field equations (Sec. V).

1l. NOETHER’S THEOREM AND CONSERVATION LAWS

Consider a physical system described by a Lagrangian
(density)

L=L(X\,$0ban)
where X, stands for the independent variables describing a
region ¥ in space-time, ¢, denotes the unknown fields while
bon =04,/9X,. Capital (lowercase) Greek letters run
over the set of independent variables (unknown fields).
Noether-type theorems, and the associated conservation
laws, are based on the invariance of the action functional

£(6) =f L(Xp bosbun)dV

under suitable transformations. By analogy with the usual
procedure, the transformations are taken as

X, =X, +¢h,,
¢_a:¢a +6§a’

¢a,/\ = ¢a,A + 6-(DAgoz - ¢a,2DA hE )!
with 4, and £, as functions of X, and ¢, while € is a param-
eter; here the summation convention is in force and

a 3 i)
+ Gon =+ bans M .

(2.1)

D, =

aX A a¢a

The last term is inserted in the definition of D, for later
convenience.

As is well known, an expression of divergence type,
Dy Js, can be added to a Lagrangian without affecting the
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Euler-Lagrange equations.'® Based on this observation, we
consider the invariance property of f to within the integral of
a divergence field."? It is convenient to express the invar-
iance in the form

fL( Xy, 7o) B (1 + Dyhis )dV
|4

_f L(XA!¢ar¢a,A )dV: J‘ ‘DEJE dI/, (22)
Vv 14

where Jy denotes a set of functions which are allowed to
depend on X, and ¢,. To within first-order terms in the
parameter €, the condition (2.2) yields

aL dL
LD, h ——h —_—
ATPA + aXA A + a¢a §a

aL
(Dpé, — ¢a,EDAh2 )=DsJs.
a¢¢1,A
Letting 7, =&, — ¢, s A5, the relation (2.3) can be given
the form

+ (2.3)

JL oL
Ne %4— (Dan.) m-l-DA (Lhy) =D,J,, (24)
whence

aL JL aL
. -D Dot L +7,- 2 _J )=0.
" (a¢a Aa¢a,A)+ (4 3o :)

The unknown fields ¢, are taken to satisfy the Euler-La-
grange equations

JL JdL

—D =0. 2.5
3. 3. 2
Accordingly, along the solutions ¢, to (2.5),
DA(hAL +q, 9L —JA) —o, (2.6)
a¢a,A
and then the vector components
dL
IA=hAL+ﬂam—JA (27)

are divergence-free.

In conclusion, once we know the transformation (2.1)
leaving the functional f invariant in the sense of (2.2), the
quantities /, enter a conservation law. That is why the set of
functions A4, , &, are said to represent a divergence symme-
try.” Operatively, the functions 4, and £, are not given
a priori and then the determination of conserved quantities
ultimately results in the determination of the functions
h,, &, (and then 77, ), and J, which satisfy (2.3). Accord-
ingly, we may regard 4, , 1,, and J, as functions satisfying
Eq. (2.4), and otherwise arbitrary, while the fields ¢, are
solutions to Eq. (2.5). Thesearchfor #,, ,,and J, ismade
(relatively) simple by the circumstance that Eq. (2.4) is
linear in 4, and 7, and by the occurrence of the arbitrary
functions J, . Of course, if the J,, ’s are taken to vanish we get
standard formulations of Noether’s theorem. "'

Incidentally, a strictly analogous procedure holds when
the functions A,, &,, and J, are allowed to depend also on
derivatives of the fields ¢, ; this case needs only a suitable
generalization of D, . In this regard we mention the general
property that® each conservation law is equivalent to one
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satisfying (2.6) and hence yields a corresponding symmetry.

IH. A VARIATIONAL PRINCIPLE FOR FLUID DYNAMICS

Consideér a perfect fluid whose motion is described in
terms of the time ¢ and the Lagrangian (Cartesian) coordi-
nates X = (X, X, X;)eZ, 7 being a suitable reference con-
figuration.'? Letting X = (x,,X,,X;), the one-parameter fam-
ily of diffeomorphisms x = x(X,#) gives the position vector
of the particle X at time ¢. Throughout we adopt the Lagran-
gian description whereby the fields under consideration are
taken to depend on X and ¢. In terms of the function x(X,#)
we may define the matrix x,, = dx,/dX, (a4 = 1,2,3), its
determinant J = det(x,, ), and its inverse X ,, = dX,/dx,.
Let p( p,) be the mass density in the present (reference)
configuration and p the pressure. The equation of motion
and the continuity equation in the Lagrangian description
are written as

an,n +XMa p,M =O’ (31)

Jp—po=0. (3.2)
As before a comma denotes partial differentiation, namely
[ =af (X,)/8, [ =3df (X,t)/0X,,. To Egs. (3.1) and
(3.2) we should add the energy equation. Since we are deal-
ing with perfect fluids the energy equation may be expressed
through the conservation of the specific entropy .S, namely
S(X,t) =5,(X).

Concerning the system (3.1) and (3.2) we observe that
x(X,t) and p(X,t) are the unknown functions, whereas
Ppo(X) and S,(X) are given initial data. The pressure p is
taken to be related to the internal energy E( p) by

o 9E.
P’

(3.3)
the possible dependence of E on S'is disregarded because S is
assumed to be constant.

In Ref. 8 an application of the techniques pertaining to
the inverse problem of the calculus of variations led to some
variational formulations for fluid dynamics. For the purpose
we have in mind we search for a formulation with x and p as
unknown functions. In such a case the pertinent equations
are just (3.1) and (3.2), and they are shown to follow from
the Euler-Lagrange equations associated with the Lagran-
gian (density)

L(x,p) =4} poXs Xa; —PoE(P) + (J — po/p) p(p). (3.4)

IV. NOETHER-TYPE CONSERVATION LAWS FOR
PERFECT FLUIDS

The general method exhibited in Sec. II for the deriva-
tion of conserved quantities and the existence of a variational
formulation, as described in Sec. II1, allows us to determine
conserved quantities for perfect fluids. In this regard we
identify the independent variables X, with the Cartesian co-
ordinates X, X,, X;, and the time t. Moreover we let ¢,
represent the Cartesian coordinates x,, x,, X5, and the mass
density p. Now, in connection with the Lagrangian (3.4) we
have
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JL ( 1 D )
= —x,,x,, —-E—=],
ax, Foa\g Terter P
aL JL dL
—~——=0, =pJX ., —— =pPoXus»
9 ox.. pJA, ox,, PoXa,

the symbol = denoting the equality along the solution. Then
the condition (2.3) becomes

hApo,A (%xa,txa,t - E —P/P)
+pJXAa (DAga - ¢a,2DAhZ ) +p0xa,t (Dwga
- ¢a,2Dth2) + (%p()xa,txa,t '_pOE) (Dtht + DA hA )

- DJ,—D,J, =0. (4.1)
As a starting point choose ks, &,, and J, as

hs = hs (X, t,x(X,1),p(X,?)),

§o = £ (X1x(X,0),p(X,1)), (4.2)

Jy =4, (X 6x(X,1) ,0(X,01)).
Then, for example,

Ohs Ohy
D.hs =hs, + ?xa,t + ?P,z»
Upon substitution, the identical validity with respect to the
derivatives p ,, p,, X.4, X,, implies that Egs. (4.2) reduce
to

a

hy =h,(X), h, =const,
ga =§a(t’x)’ §t =§1(X’t7x5p),
JA =JA (X’t)’ Jt =Jz (X,t,X),
while
aJ,
Pobar — =0, (4.3)
ax,
JA,A +J1'1 = O) (4.4)
(poha) .4 =0, (4.5)
9, 9§,
+ =0. 4.6
dx,  Ix, (4.6)

Further information on A5, £,, and J, arises from the inte-
gration of the differential equations (4.3)—-(4.6). Equation
(4.6) is a Killing-type equation in a flat space; its general
solution is (cf. Ref. 12, § 84),

€0 =0 Xy + Gas 4.7

where {, and w,, depend only upon ¢ and the matrix w,, is
skew symmetric. Equation (4.5) implies that there exists a
triple w., dependent on X, such that

(4.8)

with €3¢ the alternating tensor. In view of (4.7) it follows
from (4.3) that w,, is in fact independent of . Then the
application of (4.4) shows that {, must depend linearly on ¢,
namely , = ¢t + d,. Hence to within an inessential addi-
tive function of X and ¢, we have

Pols = €4pcWeps

J, = P, (4.9)

Meanwhile Eq. (4.4) shows that J, vanishes to within an
inessential function of X and #. In conclusion, specific con-
servation laws follow from (2.6) and (2.7) by specializing
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the parameters @, ¢,, d,, and A,. This can be seen as fol-
lows.

Consider first the transformation with 4, #0 while the
other parameters vanish. It is

§a = 0’ na = - ¢a,tht'
Accordingly, (3.4) yields

Ix = _hz(%poxa,t'xa,t +P0E), IA = _hf(xa,'XAaJp)'
(4.11)

The transformation law for surface elements, from the refer-
ence configuration to the present configuration (see, e.g.,
Ref. 13), shows that x, X ,,Jp corresponds to pv, in the
Eulerian description. Thus the conservation law

It,t +IA,A =0

(4.10)

is in fact the balance of energy.

Second, assume that d, 20 while the other parameters
vanish. Since 7, = d, we get

It = dapoxa,l’ IA = duJXAap'
The conservation law, the identity (JX ,,) , = O and the ar-
bitrariness of d,,, a = 1,2,3, yield the usual balance law for
linear momentum.

Third, let ¢, #0 while the other parameters vanish. Be-
cause of (4.7) and (4.9) we have

N, = §a = C,1,
Then the definition (2.7) gives
I, =c,tJX p.

Jt = pOcaxa .

I, =c,py(tx,, —x,),
The arbitrariness of ¢, leads to the three conservation laws
Po(tx,, —x,), + (WIx4,p) 4, =0, a=123. (412)
Hence
HpoXau +IX a0 4) =0,
namely ¢ times the components of the equation of motion.
Fourth, let w,, 70 while the other parameters vanish. It
is
o =80 = Dap Xy
Then we have

It = wabp()‘xbxa,r’ IA = wab‘beXAaP’

and hence the conservation law represents the balance of
angular momentum.

Fifth, consider the A, ’s as the only nonvanishing param-
eters. Accordingly, it is

Na = — Xaahsy-
Thus

I, = — hgpoXapXass 14 =h,(L —pJ). (4.13)
Hence it follows the conservation law

pohp (XapXa,) , — Dyl =0. (4.14)

V.REMARKS ABOUT THE NEW CONSERVATION LAWS

The conservation laws (4.12) and (4.14) are formally
and conceptually new in fluid dynamics. It is then worth
emphasizing the mathematical origin and the physical sig-
nificance of these laws.'* Mathematically, the derivation of
the law (4.12) is strictly related to the occurrence of the
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divergence term Dy J5 in the invariance condition (2.2). In-
deed, it involves the time component J, of J; and hence it
cannot be obtained if the presence of the term Dy Js is not
allowed.

The derivation of the law (4.14) depends crucially on
the arbitrary functions 4, expressing the variations of the
spatial domain (material coordinates X, ). Moreover, poh ,
is divergence-free [cf. (4.8)], which corresponds to the con-
straint of mass conservation for the coordinate transforma-
tion in Z. This geometrical property preserves the nature of
the continuum; it is neatly formulated in the Lagrangian
description but cannot arise out in the Eulerian description
because the coordinates x, are affected by the motion of the
continuum. That is why the analog of the law (4.14) cannot
appear in the Eulerian description.

The physical significance becomes more suggestive by
considering the actual configuration. Let ¥ be any region in
Z and 7 its image in the actual configuration. Upon use of
the transformation law for surface elements'® we can write
the integral form of (4.12) as

i Po(tx, —xX)do = — tf pnda,

dt J» ’ ar

n being the outward unit normal to d7". Letting X be the
center of mass and m the mass of the region 77, upon a trivial
integration and a comparison with the balance law for linear
momentum we arrive at

X(1) =x(0) +x,(0) — if f (J pn da)(é’)d@ dr;
m Jo Jo ar
(5.1)

as we expect, in case the net force due to the pressure field
vanishes, (5.1) makes the center of mass undergo a uniform
motion. It is therefore appropriate to view the result (5.1),
and hence (4.12), as the center-of-mass theorem. Inciden-
tally, the conservation laws (4.12) constitute the continuum
counterpart of a result derived by Hill' for a system of ¥
particles.

Denote now by y =X zh, ( = — m) the displacement
induced by %, in the actual configuration through the mo-
tion of the continuum (x z). The density in (4.14) can be
expressed in the integral form as

J pPY'X, do.
”

The condition (5.2) with y taken as constant constitutes the
projection of the balance law for linear momentum in the
direction induced by 4. Usually, however, y is not constant
and then (5.2) may be viewed as a weighted balance law for
linear momentum, the weight being just the vector field y.

(5.2)

VI. COMMENTS AND CONCLUSIONS

The present derivation of conservation laws for perfect
fluid motions is based on the determination of divergence
symmetries through integration of Eq. (4.1) and subsequent
application of Noether’s theorem. In this regard we think
that the present approach can be very fruitful, especially be-
cause each conservation law can be related to a divergence
symmetry, possibly dependent on the derivatives of the field
functions.” Differently from the current applications of di-
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vergence symmetry transformations, we have regarded the
quantities J, as unknown functions on the same footing as
the symmetry generators, which means that the integration
of the equations arising in the analysis of (4.1) has to be
performed without any reference to the original meaning of
the variables involved. To our minds, our approach consti-
tutes an improvement of the procedure set up by Olver® in
that it does fully exploit the facilities associated with the
existence of a variational formulation. In particular, our ap-
proach does not require the knowledge of the symmetries of
the field equations, whose determination involves a lot of
hard manipulations on a complicated system of partial dif-
ferential equations.*>?

Further—perhaps independent—conservation laws
could be generated by looking for solutions to (4.1) which
depend on higher-order derivatives. Of course, the algo-
rithm becomes more and more laborious, and the derivatives
of (2.1) and (2.2) are also to be taken into account. In this
regard an alternative simpler procedure exists which is based
on the observation that every divergence symmetry is a sym-
metry transformation for the field equations9 (2.1) and
(2.2). We can construct conservation laws involving arbi-
trary functions and higher-order derivatives of the x,,’s, e.g.,
by “deforming’>* the field (4.13) along the *direction”
(4.11). In addition, the local formulation (2.2) of the princi-
ple of conservation of mass is easily recovered by deforma-
tion of the momentum density, so that all general laws of
continuum physics are embodied in the present formulation.

In principle, new conservation laws could also be deter-
mined by deformation of a given one along the direction of a
symmetry, of the equations of motion, different from a diver-
gence symmetry. However, rather long and involved calcu-
lations show that when A3 and £, are allowed to depend on
X, 7, x, and p the generators of symmetry transformations for
the system (2.1) and (2.2) coincide with the set of diver-
gence symmetries described in Sec. IV, Therefore the analy-
sis based on invariance properties of the field equations does
not add anything new.

The algorithm based on deformation procedures is not
exhaustive. Specifically, it does not give rise, e.g., to the so-
called ““total helicity integral,” which is connected to a con-
servation law holding in the Eulerian formulation.>'® This
result, however, is recovered in the present scheme as fol-
lows. A direct substitution shows that (4.1) is identically
satisfied provided we set

§a =ht =Jt :JA =O’ hA =chAc/p’

where w, is simply the ¢ component of curl x ,, that is

w, = Ecabxb,tHXHa .
In view of (2.7), the corresponding conserved density turns
out to be

I, = — ch,twc’
which gives rise to the total helicity integral. Thus, in view of
the previous results, we conclude that the conservation laws
associated with the Eulerian description of perfect fluid mo-
tion>>1® constitute a subset of those associated with the La-
grangian description.
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With a view to the application of the present approach
to other contexts, it is worth emphasizing the main aspects of
our derivation of conservation laws for fluid dynamics. Al-
though it might appear that the Eulerian description is more
natural than the Lagrangian one in fluid dynamics, the re-
sults of this paper give evidence of the importance of the
Lagrangian description. Indeed, in comparison with analo-
gous investigations concerning the FEulerian descrip-
tion,>*16 the Lagrangian description allows the elaboration
of a more systematic approach and leads to a wider set of
conservation laws. Essentially, this is due to the fact that the
Lagrangian description provides a clear distinction between
unknown fields and independent variables.

In this conjunction, we mention that the Eulerian de-
scription has been proved not to allow the existence of arbi-
trary functions (like 4, ), thus restricting the set of conserva-
tion laws for both compressible and incompressible fluids.
This constitutes a further advantage of the Lagrangian de-
scription.

The existence of a variational formulation is not crucial
in determining conservation laws; the same results could be
attained by considering the symmetry transformations of the
given system of differential equations and using the algor-
ithms described in Refs. 3 and 4. However, the knowledge of
the Lagrangian density makes the derivation mathematical-
ly simpler and the results more suggestive as to the immedi-
ate physical meaning of the conserved quantities.
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The factorization of the wave equation into a coupled system involving up-and down-going
wave components is obtained for the case where the field quantities are multivariate functions
of spatial variables, but the velocity c is a function of the z variable only. The form of the
reflection operator is derived and the quadratic differential-integral equation satisfied by its

kernel is obtained.

1. INTRODUCTION

One of the techniques that has been used in time-depen-
dent direct and inverse scattering problems associated with
the wave equation (and similar hyperbolic systems) for a
nonhomogeneous medium is based upon the method of wave
splitting. '

The splitting of the linear one-dimensional wave equa-
tion into up- and down-going waves reduces the wave equa-
tion to a coupled first-order system in the up- and down-
going components of the fields. Exact local splittings yield
uncoupled systems whenever the medium does not vary in
the preferred direction. As an example, the splitting for the
one-dimensional wave equation

a2 1 g2
—u(zt) = —— ——u(z,t 1
9z u@n c*(2) 6t2u(z ) )
is obtained by first rewriting Eq. (1) in the form®
Lol =levmar olli]
E[uz]_[((l/c)é’t)2 0flu. 1’ @)
then defining the components
—1
[¢i]=ic_1/2[1—((1/c)a,_)l Hu] 3
@ 2 1 ((1/¢)3,) u,
where

d, = fU(Z,T)dT.
0

Asexpressed in terms of the components @ * and @ ~, system
(2) takes the form

a + _%at —;_z +
5{¢J= c 1C[¢J‘ @)
z Ly _ b _at @

2c c

Asisseen, inthe case ¢ = const the system decouplesand ¢ *
and ¢ ~ take the form @ (z,t) = f(z F-ct) of up- and down-
going waves.

The analogous splitting in the frequency domain can be
used to get the Bremmer series® and the parabolic approxi-
mation of Leontovich—-Fock.

The importance of such splittings, in general, is that
they lead to the use of invariant imbedding techniques.*”’
Given a slab of inhomogeneous medium and a splitting one
can define an associated scattering matrix. Invariant imbed-
ding techniques then allow one to write a complex system of
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differential equations for the operator entries of the scatter-
ing matrix whose differentiation is with respect to the loca-
tion of one of the planes of the slab. One can then deduce the
behavior of the reflection operators for small time which
provides a connection between up- and down-going wave
fields and the properties of the medium on the edge of the
slab.'? The reflection operator can then be used in both di-
rect and inverse scattering problems.

For the particular splitting given above, the reflection
operator is given by

t
oz =Rp* =f Rzt —$)¢ *(zs)ds, (5
0
with the kernel satisfying the system?

IRz -2 9 R0y —S“R*R=0,
Jz ¢ ot 2c

(6)
R(z,0%) =lc,,

where R#R is a convolution.

The wave splitting concept and the associated reflection
operator have been extensively used for a variety of one-
dimensional inverse problems, among these the electromag-
netic inverse problem for dispersive media,®® the inverse
problem for viscoelastic media,'® and the inverse problem
for elastic media with oblique incidence.!

A formal attempt to apply the wave splitting to the mul-
tidimensional wave equation is given by Corones and
Krueger'? and Davison.” Here the difficulty is to diagonalize
a matrix with operator entries and/or variable coefficients,
and to correctly identify the appropriate plus and minus
components (up- and down-going waves).

However, Fishman and McCoy ' were successful in fac-
torizing the reduced Helmholtz equation for the transverse-
ly inhomogeneous half-space, but their method gave rise to
pseudodifferential equations. From this, though, they were
able to develop a systematic derivation of the approximate
extended parabolic wave theories. Another attempt to en-
large the well-known factorization of the one-dimensional
case to three dimensions is given by Yagle and Levy."

In this paper, we examine the up- and down-going wave
condition (determination of the plus and minus quantities)
for the three-dimensional case. In Sec. II, Huygen’s principle
is essentially used to define up- and down-going waves in a
homogeneous medium. This leads to the introduction of an
operator .77, and a linear relationship between u and du/dz
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on a plane z = const involving the operator .%". With appro-
priate sign taken, this linear relation specifies whether the
wave is up or down going on the plane z = const. Using this,
the wave in a homogeneous slab can be decomposed into up-
and down-going wave components.

In Sec. I1I the up- and down-going wave correlation and
the associated operator %~ are generalized to the case where
¢ is a continuous function of z. This is used in Sec. IV to
generalize the wave decomposition and system given by Eq.
(4) to the case where ¥ = u(x,p,z,t). The formal generaliza-
tion of the reflection operator 2 is given in Sec. V together
with the corresponding integral-differential equation it must
satisfy.

1. CONDITION FOR UP-GOING AND DOWN-GOING
WAVES (c CONSTANT)

With u(x,y,z,t) being a solution of the wave equation
with constant velocity ¢ = ¢, a relationship will be estab-
lished here between « and «, on a plane z = const, to indicate
whether the wave is up-going (propagating in the positive z
direction) or down-going (propagating in the negative z di-
rection). For simplicity, the plane will be taken to the coor-
dinate plane z = 0. To be precise, up-going waves at z =0
will be defined as those generated by sources in the region
z <0, with the half space z>0, being source-free. Corre-
spondingly, down-going waves at z =0 are generated by
sources in the region z > 0. A relationship between u and u,
on the plane z = 0 for up-going and down-going waves can
now be established by considering the appropriate mixed
(initial and boundary-value) problem. The first of these is
given by the following lemma.

Note that the notation U(x,y;0) is used to represent the
disk with center (x,y) and radius o.

Lemma 1: The solution of the mixed problem:

1 3%
():0‘2—82

(i) u(x,p,z;0) = u,(x,3,2;,0) =0, z>0,

—Vu=0, t>0 2z>0,

(iti) C7—u(x,y,Z;t)lz=o =v(x,p,t), >0,
oz

where v is Holder continuous in R?X [0, 0 ) with v(x,y,0)
=, (x,9,0) = 0, is given by

u(x,y,zt)-—— ff ”("’y’ VXY= 11%) v gy, (7)
U(x,y;0)
where
o= (¢t —2)'"? (8)
and
P=x—x)Y+@—y)y+z~ 9)

For z> ¢yt the solution vanishes.

Proof: This representation in the time-dependent formu-
lation of the single-layer potential formulation is easily veri-
fied. Since for fixed x" and y', v(x',y';t — r/c,) /¥ satisifies the
wave equation at all points (x,y,z), where 30, it follows
that expression (7) satisfies the wave equation. The initial
conditions are easily established using the condition that
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v = 0at ¢ = 0. The boundary condition is established by us-
ing the jump condition of the normal derivative of the single
layer potential.'® [ |

The condition for up-going waves on the planez = O can
be easily obtained by replacing v(x,t) in Lemma 1 by
u, (x,y,0,t), and taking the limit of expression (7) as
z—0 + . This gives the condition for up-going waves

U(X,y,oyt) = - J —u ( ,y 0 t —5) dx’ dy’,
U(xyc(,t) O
(10)
where
R’=(x—-x")Y+ -y (11)

The condition for down-going waves can be obtained in
a similar manner by employing the corresponding mixed ini-
tial-value, boundary-value problem for the half-space z<0.
The resulting condition is same as that given by Eq. (10)
except for a difference of sign of the term of the right-hand
side.

The results can be summarized in the following Lemma.

Lemma 2: The up-going and down-going wave condi-
tion on the plane z = 0 is given by

U= i WO”:’ (12)
where the operator %", is defined by
FHp= — ff VXY= RIC) gorgy, (13)
2T R

U(x,y;cat)
and the plus and minus signs in Eq. (13) refer to up-going
and down-going waves, respectively.

We want to show next that condition (12) can be ex-
pressed in the form %"; 'u = + u,. To show this the fol-
lowing lemma is needed.

Lemma 3: The solution of the mixed problems,

2

M i o

(ii) u(x,y,z,O) =u,(x,,2,0) =0, z>0,

— Vi =0, z>0,

>0,

(ii1) u(xp,0,t) =w(xyt), t>0,

where w and w, are Holder continuous in R?X [0, 0 ) with
w(x,y,0) =w, (xy,0) = w, (x,9,0) =0, is given by

u(x,y,Z,t) = 'L ff [w(xlﬁylyt - L)
21 Co

U(x,y;0)
+—r—iw(x’y't—— —f—)}-z~ dx'dy' (14)
co Ot w7 /1 r ’
with the solution vanishing for z > cyt, and o given by Eq.
(8).

Proof: This representation in terms of the time-depen-
dent form of the double layer potential is easily verified.
Since for fixed x’ and y’, (8 /dz){w(x",y',t — r/c,)/r} satis-
fies the wave equation for r5£0, the integrand in the expres-
sion satisfies the wave equation for z> 0. The conditions on v
at ¢ = O ensure that no contribution comes from the limits of
the integral when expression (1.4) is inserted in the wave
equation. At the same time these conditions ensure that the
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initial conditions are satisfied. The boundary condition is
established using the jump condition for the double layer
potential.!® [ |

Relation (14) can now be used to get the alternative
form for the up-going wave. First, w(x,y,t) is replaced by the
C? function u(x,y,0,¢), and then in the resulting expression
for u(x,y,z,t), the order of differentiation and integration is
changed to yield for z> 0,

JJ =

U(x,y;0)

u(x,p,z,t) = —ZL % —17%) gy ay

(15)

with o = (¢,2t? — 22) V2

Since it is easily verified that the integral expression on
the right-hand side of Eq. (15) is a solution of the wave
equation for z>0 [using conditions u(x,y,0,0) =0,
u, (x,»,0,0) = 0], it can be shown that for z> 0,

Ju
- 3V 7t
5 (x.,2,t)

— _ DO_I__ fJ u(x ,}’ ,O;t - r/co) dxr dyl,
2

r

U(x,y;0)

2 2 2
o (L2222
4]

Hence taking the limit as z—07, one obtains

(16)

9 u(x,3,0,t) = 00 F g1t 7
Jz
as an alternative condition for up-going waves at z =0. It
follows from Egs. (12) and (17) that %5 ' exists and is
given by

Kot =0F 0 (18)

A similar result to expression (17) for down-going
waves can be obtained. The results are summarized as fol-
lows.

Lemma 4: The up-going and down-going wave condi-
tion on the plane z = 0 is given by

-1
F s lu= +u,

where %5 ! is given by Eq. (18).
Applying the up-going and down-going wave condi-
tions (12) at any plane z = const other than just the plane

(19)

w(x',y',s)

z = 0, we can decompose the solution u (x,p,z,t) of the wave
equation in terms of up- and down-going components. Using

the following identity:
U= l(u-i—ﬁif 8u) (u—Woﬂ-),
2 dz 2 dz

it follows that u can be decomposed into the two compo-
nents,

u(xpzt) = ut (xp,2,t) +u" (xp21), (20)
where
(w20 5).
ut (xpz,t) =—\u+ %, 21
(x.y,2,t) 5 R (21)

Itis easily seen that u™ (x,p,z,¢) represents an up-going wave
since

2
(u+__jv/0 8u+)=i(u_lzfoza_u)

oz 2 az?
1 {u — ¥ 300u}
{u—u}=0

satisfies the up-going condition (12).
satisfies the down-going

which implies that
Similarly, it can be shown that 4~
condition (12).

11l. DECOMPOSITION INTO UP- AND DOWN-GOING
WAVES WHEN ¢(2) IS A FUNCTION OF 2

Here we want to extend the decomposition of u into up-
and down-going waves [as given by Eq. (20)] to the case
where the velocity ¢ is a piecewise differentiable function of
z. The extension will be based upon the physical idea of slic-
ing the medium into a set of infinitesimal slabs of width Az,
in each of which ¢ is constant, then imposing the decomposi-
tion given by Eqs. (20) and (21) in each slab. Thus by first
modifying the operator %", to take into account the vari-
ation of ¢(z) with z by defining

P w J‘J‘ wx'y',t — R/c(z)) dx’ dy'

U(xyc(z)t)

(22)
the upward and downward wave components [given by
(21)] will now be defined as follows:

-5 (s
ut + 7 )
2 dz

It is shown in Appendix A that as expected % has es-
sentially the same properties as %, namely, that

(23)

2y = C(Z) f ff !
[ (z)(t —s)" — (x —

Ulx,y;c(t —s))

which is Poisson’s formula'® for the solution of the wave
equation with zero initial conditions. Hence we have

O% *w = w, (24)
where
2 2 2
ot 25 )
T eX(z) At P P
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x')? —

TETIE I

"I;s if weC?(R?) X C?[0, ) (corresponding to the classi-
cal solution), then Eq. (24) states that (1% is the left in-
verse of %". In order for % to be a right inverse also, i.e.,
F(OX) = (OX) % =1, an additional condition on w
has to be imposed. It can be shown (by putting the
integral expression for ¥"w in local polar form), that
BN H(Fw) =K (3%*/3t?*) (K w) provided that
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Fw=(d/0t)% w=0attimet = 0, and this in turn holds
provided that w = 0 at time ¢ = 0. One can then verify that
the right-inverse condition holds provided that the domain is
restricted to functions that vanish at r = 0. Additional re-
sults are given in Eq. (27) below. The results are summar-
ized in the following Lemma.

Lemma 5: Let weC*(R?) X C?[0, % ), then (i) O.% is
the left inverse of %,

(OF)YFH w=w, (26)
(i) if w = 0 at ¢ = O, then (0% is the right inverse of %~

Z(OF Hyw=w, (26"
(iii) furthermore if w = w, = 0 att =0, then

K Ow=0%"w=uw. 27

a

In the one-dimensional case, the operator %~ takes the
very simple form
t
Fw= —c(2) J- w(s)ds. (28)
0

An alternative form for %"~ is developed in Appendix
B. There it is shown that if weC?(R?) X C?[0, ), then

F = —i—a—w(x,y,t) + Lw, (29)
c ot
where the operator .¢ is given by
[ R)(xl_x)
- WX Yt ——
ff { ( Y c R’
U(x.y;ct)
. O — )}
w, | X'yt — dx' dy', (30)
* y( 4 c) R? 7

where R is defined by Eq. (11).

IV. FACTORIZATION OF THE WAVE EQUATION IN A
STRATIFIED MEDIUM

The upward and downward wave decomposition will be
applied to the factorization of the wave equation for a strati-
fied medium. Using the same initial procedure that was done
for the one-dimensional (spatial) case,' where 1 is a function
of z and ¢ only, the wave equation will be written in the form

#Lel=16 ol L]

The upward and downward wave down decomposition
as defined by Eq. (23) will be expressed in vector form

(3D

ut u
[]-o[2)
u u,
where .7 is the matrix operator
7 =1 [1 7 ] 33
2l - (33)
whose inverse is given by
1
=y _ o] (34)

With the insertion of the inverse relation
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u +
A
u, u
into Eq. (31) and the premultiplication of the resulting
equation by the matrix operator .7, the following is ob-
tained:

1l B O ol W e b
dz lu= 1™ O o u- Jz lu=1’

(36)
Using relations (33) and (34) it can be shown that
~10 1] 1 [ﬁ/“ 0 ]
o [D 0]‘/ B - % G7)
a—1 — —1
797 =i[ ! I]Waj/ . (38)
dz 21-—1 1 oz

Using the identity %".%"~' = I it follows that if w is such

that w, w, vanish at # =0,
-1
ax )wz _ (‘9‘%/)%~1w _ (&%f
dz dz oz
From Eq. (A9) in the Appendix, this becomes

—1

97 )w= _L {tﬁ” (ti)
Jz 2¢ 9z ar

_ (zimw)]

a

__ 1o { WZD
20z (91

2
7ol g 2w

x ( ) FTw,

|

1 dc 1 82
= — =% (-— ) . 39
c dz ¢ ar? G
But on using the relation
o1 32 a*  4d°
e e
2
e )
the resulting expression is obtained
—1 2 2
ﬁf’(a‘%f )w= -——Lﬁ[w+<a—2+a—z)ﬁfﬂw] )
9z ¢ dz dx*  dy
(40)
System (36) can now be expressed in the explicit form
L] [“C’”“' -]
dz lu™ o 0 — % "'u~
4 [ (1+4A) —(1+A)][u+]
2c’ - (1+A) 1+ MHu"l’
(41)
where A is the operator
a2 8
Some s1mp11ﬁcat10n is achieved if one sets
u* =C1/2¢i, (43)

in which case system (41) reduces to
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2=l a5

dz — X e~
o TR VA
+2cC’[—(1+A) -1
(44)

System (44) can now be used to derive the reflection
operator as is shown in the next section.

V. REFLECTION OPERATOR

In this section, the reflection operator (relating the
down-going wave to the up-going wave) given by Eq. (5) for
the one-dimensional case, will be generalized to the multidi-
mensional case. In particular, the equation and initial condi-
tions that are satisfied by the kernel of the reflection operator
will be sought. For the multidimensional case, the reflection
operator will take the form (the reason for it, will be appar-
ent later)

T (xy.2,8) =R = (I+ A)Regp™, (45)

where A is the operator given by Eq. (42) and R*¢™ is the
convolution

R*¢+=fJfR(x—x',y—y’,z,t—s)
0 JR2

X¢+ (X',J?',Z,S)dx' dy' ds

involving the reflection operator kernel R{x,p,z,t).
As a preliminary a number of identities need to be de-
duced, among them the following:

(46)

2c,
+_~A¢] ’ t>O)
(4
(47)

where ¥(x,p,2,t) is a sufficiently smooth function such that

Y=y, =0atr=0.
To obtain expression (47) the relation [obtained from

27 ]

DWZX =X(xyy’t)’
valid for y (x,y,t) such that y = y, = 0Oat¢ =0, is differenti-
ated with respect to z, giving

1 92 3
2% (19 4 ) D(—zﬂ) -0
c (c at? X)+ dz X

From relations (27) and (42) this reduces to

a _ 9
Z{a+ MR =U [az

t>0,

(iyl)x=23%f2(1 +A)y.
adz c

It can now be seen using this relation that

w o= )G )y

=A[ U+ A+ 3”}

Hence identity (47) immediately follows.
The next result that is needed is the following lemma.
Lemma 6: The only C?*(R3®)XC?[0,0) solution
Y(x,p,z,t) of the system
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(I+AM)y=0, >0, (48)

is the trivial solution ¥=0.
Proof: Equation (48) can be written in the form

2
—(F ) =0
3t2( v

Since ¥y, (3 /9t) % % vanish at ¢t =0, it follows that
K 21// = 0, for £>0. Operating on this with [J, it follows from
Eq. (26) that =0, 1>0.

We will now proceed to get the equation for the reflec-
tion operator. System (44), written out explicitly, takes the
form

Ap+! [ 1 € ] . G _

=% Z AT — 2T+ A, 49
e +2€ ¢ 2c( + A (49)
_‘7‘?5_:[_%—‘ C—ZA] - _ % I+ Ayt 50
P +2c ¢ 2c( + AT, (50)

It will be assumed that ¢ * is a sufficiently smooth func-
tion and that ¢* = ¢,* =0 at r = 0. It can then be shown
thatboth R#¢ ™ and (d /9t) (R+¢™ ) vanishatz = 0. Henceit
follows that

FH7'I+ A)(Reg™)
1 2
= L Rt =7 L (Reg)

_1 a2

2 a EYE)
Insert expression (45) for ¢~ into Eq. (50), and employ
relation (47), and the above interchange of operators to ob-
tain

— ¥ (Rx¢*) = (I + A)F "' (Rxp™).

T+ A) [—@—(RW)
dz

+ (ﬁzf-‘ +ic—ZA) (Reg™) + =4+ =0. (51)
2 ¢ 2c
Because of the assumptions on ¢ *, Lemma 6 can be applied
to Eq. (51) to yield
R, *¢™ + Rsg"

3

s 2Ea) R+ 2o =0 )
2 ¢ 2c

Replace ¢,7 in Eq. (52) by the right-hand side of expression
(49) to give

Roag + B (716 + 2 ag)
c
— ZRe(I + A)2(Reg*)
2c
H(r e 25 n) Ry + 297 =0
2 ¢ 2c

In order to reduce expression (53) the following results
involving the convolution of f (x,y,t) and g(x,p,t) [as de-
fined by Eq. (46)]:

SH(HPg)y = (FHPN)xg = FP(f+g),
d%g 3f a2
f*(axz)z(axz )*g:ﬁ (/&)

(with a similar result holding for the derivative with respect

(53)

p=12,
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to y), will be employed. In addition to these relationships,
the relationships

—a—z(fg) (ajf) *g

= (55)-(55)
JJf,(x—x,y y,0)g(x',y,t)dx’ dy’

valid for fand g such that at timer =0, f=g = dg/dt =0,
will be used.

Using the relation % ~'=[0.%" and the fact that
FHR=0, and (4/3t) (' R) = —cR(x,y,2,0) at t =0, it
can thus be shown that
R* (W— 1¢+ )

=X "1(Rx")

= (‘z/‘_lR)*¢+ —_—

1 ? '
—f fR(x —x'y—y.z0)
C JR>

X+ (x'Yy,z,t)dx' dy'. (54)
From the relation
1 97
2 a 2
and the fact that %R =
follows that

Rx(I+ A)g* =[(I 4+ A)R]x¢* =

I+ M) =

(8 /0t) (F*R) =0att = 0,italso

I+ A)(Reg™).
(55)

From the results of Egs. (54) and (55), Eq. (53) can
now be reduced to the form

(TR)*¢™ + = ¢+———JJR(x—x,y v',z,0)
Xt (x',y,z,0)dx dy =0, (56)

where the operator T is given by

TR=R, +2% 'R+ 2(c,/c)AR
—A{c,/2c)(T 4+ AMR«(I + A)R. (57)
Now impose the following initial condition on R the
reflection kernel:
R(x,2,0) = (¢,/4)6(x)5(y). (58)

In this case Eq. (56) reduces to (I'R)*¢™ = 0. Since ¢
may be treated as an arbitrary smooth test function such that
¢+ =¢,* =0, the following equation for the reflection ker-
nel is immediately derived:

1

w(x"py".s)8(c(t —s)

_RI_R/I

R, +2(% '+ (c,/c)A)R
— (¢,/2e) I+ A)R*(I+ A)R=0. (59)

Equation (59) and initial condition (58) constitutes the
required system for the reflection kernel. These are seen to be
an immediate generalization of the one-dimensional system
(6).

The existence of the solution of equations (58) and (59)
needs to be examined. Because of the delta function in the
initial condition one would have to look for solutions belong-
ing to the space of tempered distributions. The quadratic
term should pose no problem since it is a convolution and the
operator A is convolution like in its support.

Equation (59) can be used both in the direct and inverse
scattering problem. In the inverse problem, R(x,y,2,¢) is a
known function on the plane z = 0. Equation (59) is used to
numerically construct R(x,y,z,¢) in a step by step basis
(peeling off layer by layer) in the region z > 0, and the value
of ¢(z) is recovered from condition (58). The process de-
scribed here needs to be examined in detail.

VI. COMMENTS

The results derived here represent an important inter-
mediate step in extending the concept of wave splitting with
its associated reflection operator, from the one-dimensional
case to the full three-dimensional case where ¢ = c(x,p,z).
Present investigation indicates that the concepts and analy-
sis developed here can be extended to wave splitting for
smooth nonplanar geometry.
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APPENDIX A: EVALUATION OF %2 AND ((3/02).%").%"
From Eq. (22) if follows that

T = 1 j H(ct—R'—R")
(2m)? Jrixr

R /R ”
Xw( J I—B——E-)dx dy' dx" dy",
¢ ¢

(A1)
where H(7) is the Heaviside step function, ¢ = ¢(z), and
=[(x—=x)+ -y
R"=[(x'—x"y 4+ (¢ —p")*1"2
This can be written in the form

o5 Lok
(2m)* Jrexre Jo R'R”

f f w(x”,y",s)lldx" dy”

( 277) ?
where

f 6(c(t _s) R ”) dxr dyl
’R ” :
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) dsdx' dy' dx" dy”

(A2)

(A3)
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With (x',p"), the variables of integration of 1, free to be chosen so that the x" axis lies along the line joining points (x,y) and
(x”,p") and the origin at the midpoint, elliptic coordinates (u,6) given by'®

x'=1Rcoshpcosf, y =1}Rsinhpysiné (A4)
are introduced where R is the distance between (x,p) and (x”,y") and 0<8< 2, 0<u < . Using the fact that
(1/R’'R")dx' dy' =du df, R'+ R" =R coshy,

we have
2 @
I =f f S(c(t — s) — R cosh u)du do,
0 0

H(t—s)H{c(t—s)—R)
=27T [CZ(t_S)Z_RZ]I/Z ’ (AS)

which yields the following;:

c | w(x"y".s)dx" dy” ds
= . A6
‘n'J; .” [t —3$)" — (x~—x") — (y—p")?]"/? (A0
Ulx,y,c(t — 5))
r

The evaluation of ((d /3z) % )% w proceeds in asimilar ~ APPENDIX B: ALTERNATIVE FORM FOR . 1
fashion. First noting that

In expression (22) for % w, change the variables of in-

( a %/) o= — L de 1 tegration (x',y") tolocal polar coordinates (R,6) centered at
dz P ozm (x),x' =x + R cos 6,y =y + R sin 6, then replace R by
s through the substitution R = ¢(¢ — s), giving
R
X Jf w( , t—~—)dxd L 2
A c 4 Fw = —Lff w(x + ¢(t — s)cos B,y
Ux,yset) 27 Jo Jo
with + (1 — )sin 6,5)d0 ds. (BI)

R =[(x—x) 4 —-y)1"?

2(R?) X C2[0, % ), then it be shown
it follows in a similar fashion that If w(xy,neC*(R) X C7[0,c0), then it can

that
(?_ﬁf)ﬁ/w= Lde 1 R .
oz ¢ 3z (2m) ( + ) w = _——f {w,, +w,,}dbds,
x> o Jo
Xf J w, (x".y" )L, dx" dy” (A7) (B2)
R? JO
2 t 27
where i?‘?_’ W= _LJ [w,, cos? 6 + 2w,
Slc(t—s)—R'—R") ,, ., ¢ ar? 27 Jo Jo
122 dx dy . 22
R R X cos 6 sin 6 + w,, sin” 0 |d6 ds
Using elliptic coordinates this reduces to 19
27, ——é—w(x,y,t). (B3)
Izzf J 8(c(t —s) — R cosh ) ¢ ot
o e Hence it follows that
X% (cosh u — cos 8)du d6 e 1
OX w=—— lim J 22 dods
ﬂH(t—s)H(c(t~s) Rje(t—s) 27 e~0Jo ¢ (t—s) 86
= (A8)
[(¢ R?)'? 4 nmf f
Hence we have from (A7) and (A8), 27 «—0 Jo 0 c(t—s)
(aﬁ”)ﬁ,w X [w, cos @ + w, sin & |dO ds
Jz 13
*——w(x%t)- (B4)
1 dc c ot
T 4r 9z Noting that
w, (x",y",s) (1 —5)
//d ” 27
Xf fle,y;c(l»s)) [¢*(t —s)> — R?]'/? i lim (w, cos 6 + w, sin 8)d6 =0,
1 de e
=——{t7*(w,) — F?*(tw, A9
2¢ 9. z{ (we) (). (A9) it follows from Eqs. (B3) and (24) that
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I w

£ 27
1 __1._f (w, cos 8 + w, sin §)d0 ds
2w Jo (¢ —35) Jo

L9 . (B3)
ot

¢
On transformation back to the variables x',)’, this takes the
form

J

Hlw= —i—w(x,y,t) + Zw, (B6)
c ot
where
Fw= .“- [w,‘ (x',y';t — _1&)____():’ —X)
2T c R3
U(x,y;et)
’ o, R (y’ _y) ' .
+wy<x RY ,t——c—)T—] dx'dy'. (B7)
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The old problem of light scattering from a perfectly conducting surface is addressed. An
electromagnetic field is incident upon the boundary, where it induces a charge and current
distribution. These charges and currents emit the reflected fields. A set of equations for the
charges and currents on the surface is derived by eliminating the E and B fields from
Maxwell’s equations with the aid of the appropriate boundary conditions. An explicit and
general solution is achieved, which reveals the confinement and redistribution of the charge
and the current on the surface by the external field. Expressions are obtained for the surface
resolvents, or the redistribution matrices, which represent the surface geometry. Action of a
surface resolvent on the incident field, evaluated at the surface, then yields the charge and
current distributions. The Faraday induction appears as an additional contribution to the
charge density. Subsequently, the reflected fields are expanded in spherical waves, which have
the surface-multipole moments as a source. Explicit expressions are presented for the surface-
multipole moments, and it is pointed out that charge conservation on the surface sets
constraints on these moments. The results apply to arbitrarily shaped surfaces and to any
incident field. For a specific choice of the surface structure and the external field, the solutions
for the charge, the current, and the reflected fields are amenable to numerical evaluation.

1. INTRODUCTION

The study of chemistry and physics near a surface has
developed rapidly during the last decade. Investigations
range from classical processes like periodic deposition,' im-
age formation,>™ and dispersion of plasmon waves’~ to
quantum mechanical issues as Raman scattering of intense
laser light,>?* atomic fluorescence near a rough surface,>*¢
the coupling of an atomic dipole to surface polaritons,”’ and
cooperative emission processes near a conductor.”® It ap-
pears, however, that besides these well-established theories,
even the simplest problem—Iight scattering from an arbi-
trarily shaped surface—is not yet completely tractable. Ear-
ly approximations like the Rayleigh—Fano expansion (neg-
lection of multiple reflections) or the small-roughness limit
provide sufficient understanding of the induced effects on a
boundary by incident fields, but exact solutions in the form
of general expressions for the scattered fields and the surface
waves are not available at present. Contemporary closed-
form solutions pertain only to polarized plane waves, inci-
dent upon gratings with well-defined geometries, like square
or sinusoidal wells. The results always rely on the periodicity
of the surface roughness, which implies the applicability of
Fourier-series expansions, or a numerical solution of the ex-
tinction theorems, as they exist in many phrasings.”*'! In
this paper we consider a metallic surface, which is illuminat-
ed by an externally applied electromagnetic field with an
arbitrary time dependence and spatial distribution. The sur-
face is not assumed to be periodic, and our results apply
equally well to a closed surface or to assemblies of surfaces,
as for example a sphere near a grating. We achieve closed-
form solutions of Maxwell’s equations for the charge and
current distributions on the surface and for the reflected
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fields, although at the expense of the assumption that the
metal has a perfect conductivity.

ll. THE FIELD EQUATIONS

The time development and the spatial distribution of the
charge density p(r,?), the current density j(r,?), the electric
field E(r,?), and the magnetic field B(r,7) are governed by
Maxwell’s equations. If we adopt a Fourier transform of the
real-valued fields

E(r,0) =LReJ dw ﬁ(r,w)e“"‘", 2.1

T o

and similarly for the other three fields, then the field equa-
tions read

V-[e(r)E(r)] =p(r), (2:2)
V-B(r) =0, (2.3)
VXE(r) —iwB(r) =0, (2.4)
VX [p(r) 'B(r)] + iwe(r)E(r) = j(r), (2.5)

where we have simplified the notation by writing E(r) rath-
er than E(r,w). The frequency dependence of the fields and
of €(r) and u(r) will be suppressed throughout this paper.

We shall suppose that the entire space is occupied by
two kinds of media, perfect conductors and perfect insula-
tors, which are separated by boundaries. The set of all boun-
daries will then be referred to as the surface. Within each
medium the dielectric constant €(r) and the permeability
p(r) will be assumed to be r independent, but across the
surface €(r) and u(r) are discontinuous. Conductors are
specified by a relation like j(r) = yE(r), ¥ >0, and the as-
sumption of perfect conductivity implies the limit y— co.
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Since the current density j(r) should remain finite, we ob-
tain E(r) = 0 everywhere in the conductor. From Eq. (2.2)
we then find p(r) = 0, and Eq. (2.4) yields B(r) = 0, under
the restriction ws£0. In this paper we will exclude the trivial
static case w = 0. Finally, Eq. (2.5) gives j(r) =0, and
hence Maxwell’s equations in the conductor reduce to

E(r) =0, B(r)=0, p(r)=0, j(r)=0. (2.6)

Around a point r on the surface the fields are discontin-
uous. Application of Gauss’ theoremon (2.2) and (2.3) and
of Stokes’ theorem on (2.4) and (2.5) enables us to rewrite
the equations in the vicinity of the surface as

E(r") =€e¢ lo(r)n(r), 2.7)
B(r*) = ui(r) Xn(r). (2.8)

Here o(r) and i(r) are the surface charge and current den-
sity, respectively, and n(r) represents the unit normal vector
in r on the surface, with the convention that it points from
the conductor to the dielectric. We have introduced the no-
tation r* to indicate a point in the dielectric and close tor.
Explicitly, we write

r*=r+n(r)é§ with §0. 2.9)

We note that Egs. (2.7) and (2.8) combine the four Max-
well equations in r on the surface, and that they contain four
unknown fields.

The dielectric is presumed to exhibit no conductivity at
all, so it can be specified by j = yE with ¥ —0. This implies
j =0, and from charge conservation (V-j = iwp) we find
p = 0, since we required w 0. Hence, all charges and cur-
rents, if any, are situated on the surface as o(r) andi(r). The
electric and magnetic fields in the dielectric are generated by
o(r) and i(r), and they contain the incident fields. This no-
tion allows us to write Maxwell’s equations for a point r in
the dielectric as

p(r) =0, (2.10)
Jr) =0, 2.11)
E(r) — E(r)™ = *—1fd,4 'o(r)VG(r,r)
de
+m—#fdA’i(r’)G(r,r’), (2.12)
47
B(r) —B(r)i"°=—i—”fdA'i(r')XVG(r,r'), (2.13)
T

where the integrals run over the complete surface. This rep-
resentation involves the Green’s function of the wave equa-
tion,

G(ry') =|r—r'| "exp(ik|r —r']), (2.14)
and its gradient
VG(r,r)=(r—r)|r—r| (kjr—r|—-1)
Xexp(ik r —r']), (2.15)

which contain the wave number &k = (eu)'/?w. We have to

solve the set (2.12) and (2.13) for o(r), i(r), E(r), and
B(r), and Maxwell’s equations (2.7) and (2.8) on the sur-
face can be considered as the boundary conditions.
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ill. ELIMINATION OF THE FIELDS

Maxwell’s equations in the dielectric medium are basi-
cally two equations with four unknown fields, but we can
eliminate the radiation fields E(r) and B(r) with the bound-
ary conditions (2.7) and (2.8). To this end we take r in
(2.12) and (2.13) asr™* from (2.9), and then substitute the
boundary values for E(r*) and B(r*). This procedure
leaves us with a set of two equations for o(r) and i(r). The
appearance of G(r*,r') and V_, G(r*,r’) in the integrands
of (2.12) and (2.13) is not convenient since it involves
points r*, which are not situated on the surface. It will turn
out to be more practical to have equations in which the
Green’s function connects only points of the surface, rather
than a point on the surface to a point in the dielectric. How-
ever, care should be exercised in replacing r* by r, because
the integrals are discontinuous across the surface. If we take
the limit r* —r properly (see Appendix), we obtain

fdA To(r)VG(rt,r')

= — 2ro(r)n(r) + fdA "o (r)VG(rr'), (3.1)

fdA'i(r’)G(r*,r’) =fdA’i(r’)G(r,r’), (3.2)

JdA "iI(r)XVG(rT,r')

= — 27i(r) Xn(r) +fdA’i(r')xVG(r,r'), (3.3)

and we observe that replacing r* by r requires that we
should add the terms — 27o(r)n(r) and — 27i(r) Xn(r)
in Egs. (3.1) and (3.3). It was already pointed out by Mara-
dudin®® that integrals of this kind appear to have a finite
contribution from a single point. This feature can, however,
also be regarded as resulting from the discontinuity of the
fields across the surface. Critical comments on this issue
have also been made by Agarwal'? in a slightly different con-
text. Combining everything then yields the set of equations

o(r)n(r) = -_—lfdA "o (r)VG(r,r')
21

+ "‘Z’ﬁ f dA " i(r')G(r,r') + 2€E(r)™,
m
(3.4)

i(r)Xn(r) =~;—1fdA ") XVG(rr') + 2u 'B(r)™,
T
(3.5)
for o(r) and i(r). We can write o(r) and i(r) in the inte-
grands as
o(r) =n(r)«{o(r)n(r)), (3.6)
i(r) = n(r) X(i(r) Xn(r)), (3.7)
since i(r) is parallel to the surface, which shows that Egs.
(3.4) and (3.5) are essentially a set of equations for the vec-
tor fields o(r)n(r) and i(r) Xn{(r) on the surface.
Equation (3.5) fori(r) Xn(r) has the form of an inho-

mogeneous Fredholm equation of the second kind, where
the external field 2,7 'B(r)™ is the inhomogeneity. In the
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same fashion, Eq. (3.4) has 2€E(r)™ (and the current
term) as an inhomogeneous part. Hence the incident fields
can be regarded as the source terms of these equations. In
this sense o(r) #0 and i(r) ## 0 are a result of the presence of
the driving field, so the charges and the currents are confined
on the surface by the field. If there is a net charge on the
surface, this mechanism might also be conceived as a redis-
tribution process. Equations (3.4) and (3.5) resemble the
extinction theorem for the analogous problem of scattering
of an incident field from a dielectric grating. The extinction
theorem is, however, a homogeneous equation, and its solv-
ability condition is equivalent to the dispersion relation for
surface polaritons.

IV. REPRESENTATION OF THE SURFACE

Ordinary Fredholm equations are single-variable equa-
tions for a function on the complex plane, and they can be
solved by an expansion of the function onto a suitable com-
plete set. Our equations for o(r)n(r) and i(r) Xn(r) are
three-dimensional and surface-related equations for a vector
field, so we have to modify the standard technique slightly.
In order to accomplish this, we introduce spherical coordi-
nates (r,0,¢) with respect to an arbitrary origin, and we will
abbreviate the direction 6,¢ by the single variable (). Then
the assembly of all points r, which constitute the surface, can
be represented by a set of functions £(Q),. The £(Q0),; will
indicate the distance from the origin to a point r on the sur-
face, in the direction ), while the subscript A accounts for
the multiplicity (see Fig. 1). In this fashion, the surface is
divided in regions, numbered by 4, where its shape is defined
by a function £(Q),, which determines uniquely the spheri-
cal coordinates (»,6,0) = (£(6,4),,0,¢) of a point r in this
region. The shape functions £(£2),; will be assumed to be
given, and therefore we can represent a point on the surface
by its surface coordinates (A4,}) rather than by its spherical
coordinates (7,£2). We will use A as a subscript and £ as a
variable.

The measure dA4({1),; and the direction n({1); of the
surface at a given point (4,()) are fixed by its shape £(Q) ;.
For instance, the infinitesimal surface area at (1,Q) is given
by

dA(Q)A_ =f(ﬂ)/1 dQ, (4.1)
with
a 2
A, =§<mi[§<mi + (55(%)
l a 231/2
sinze(ﬁg(m*) } ’ (4.2)

FIG. 1. Illustration of the surface multiplicity. From the origin O in the
direction Q, we find points on the surface which have a distance
£(Q),E(Q),,... to 0. Therefore, a description of the surface in spherical
coordinates requires a set of functions £(),.
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in terms of the infinitesimal surface area d() = sin 6 d@ d¢ of
the unit sphere. Hence the function f({2), accounts for the
deviation of the surface curvature from the curvature of a
sphere, and with the aid of (4.1) we can transform a surface
integral over the region A into an integration over a part of
the unit sphere. We note that not every direction € for a
given A corresponds to a point on the surface. It will turn out
to be convenient to extend the definition (4.1) of f({2), as

1), =0, ifQ does not correspond to a point on

the surface in region 4. (4.3)
Then we can write the surface integrals as
[aa =3 [aosa, - (4.4)
A

where the integrals now run over the complete unit sphere
for every A. This construction will enable us to apply the
general theory of expanding vector fields on a sphere.

V. EXPANSION OF THE FIELDS

Since we are using spherical coordinates, the spherical
harmonics Y(2),,, supply a suitable complete set on the unit
sphere for an expansion of the magnitude of a vector field.
The direction of a vector will be expanded onto a space-fixed
set of three unit vectors, denoted by e, , which is, for instance,
the Cartesian set e_,e,.e, or the spherical set e ;,e,e_;.
Then the vector fields Y () ,,, €, constitute a complete set on
the unit sphere for an expansion of an arbitrary vector field.

It is our aim to solve Egs. (3.4) and (3.5) for o(r)n(r)
and i(r) Xn(r). We thus start with an expansion of these
fields,

SQ),0(0),n(Q)z =Y Spa Yim (Qe,,

Imr

A0, X0(0), = T Lpr Vi (Ve

Imr

(5.1)

(5.2)

and note that we have included a factor f({2), on the left-
hand side. This is necessary, since otherwise the left-hand
side of Egs. (5.1) and (5.2) would not be properly defined
for every €. The driving, incident fields E(r)",B(r)™ in
Egs. (3.4) and (3.5) enter only through their value on the
surface, so that we can expand them on the surface set ac-
cording to

AQ),EQ)F =Y E,., Y(Q),e,, (5.3)

imr

S, B =3 B,y Y(Q) e, (5.4)

Imr

The expansion coefficients for the incident fields then follow
from the inverse relation

E,. . =fdﬂf(ﬂ),1E(Q)‘,{‘°-efY(Q)}',‘,,, (5.5)

By =fd0f(Q)AB(Q)T°-efY(Q)ﬁn, (5.6)

and the appearance of f({1); in the integrands reflects that
we actually have integrals over region A of the surface. This
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illustrates that /(Q); Y(Q)¥,e* can be considered as a com-
plete surface set for the expansion of a vector field on the
surface. Note that we allow e, to be complex, which is the

case for a spherical set.

VI. THE CHARGE AND THE CURRENT DISTRIBUTIONS

It is straightfoward to rewrite Eqgs. (3.4) and (3.5) for
o(r)n(r) and i(r) Xn(r) in terms of their expansion coeffi-
cients. We obtain

Z (R I(rzr?r/l,l'm'r'/l C (511' amm' 51’7" 511 ’ )Sl'm'r'l '

I'mrrA

= lwe/u‘ Z R l(r?l?r/{,l ‘'m't'A '11 ‘mTA T 2EE‘Im‘r/l b (6 1 )
I'm'r'A’
z (R l(hl‘l)ﬂ'/{,l mrA T 51[' 6mm' (STT' 5/1/1 ’ )Il'm'-r'ﬂ. '
A
= —Zlu_lBlm-r/l’ (62)

which are two coupled inhomogeneous linear equations for
the surface charge S,,,,;, and the surface current 7,,,.,. The
expansion coefficients E,,,.; and B,,,, for the external fields
are supposed to be given. The set (6.1) and (6.2) also in-
volves three R-matrices, with matrix elements

R =;—7T‘fdn f 49 (), YR Y,

X {e:‘x(n(Q’)/l’ Xer' )}.VG(Qyﬂ’)i/{"
(6.3)

R asmer =5 [ 40 [ a0 o, vs, v,

X (n(Q), . e%)e*VG(Q,Q),, ., (6.4)

Riarmrs = [ da [ aer e, ooy, v,

Xe*(n(Q) ;. Xe, )G(LQ) 1, (6.5)

where we have written G(,0') ,,. for the Green’s function,
which connects the points (4,2) and (4 ',£)") of the surface.
We emphasize that these R-matrices depend only on the ge-
ometry of the surface, and not on the external fields. Pre-
scription of the shape of the surface determines the R-matri-
ces. Recall, however, that the R-matrices depend on the
frequency w through the Green'’s function, but this is merely
a parametric dependence and independent of the external
field.

The expansion coefficients S, ; can always be arranged
in a one-dimensional array, considered as a vector, and simi-
larly R Y, R ®, and R ® can be regarded as two-dimensional
matrices. Then we can write (6.1) and (6.2) as

(R -1S= iweuR BF — 2¢E, (6.6)

(RY—1)[= —2u~"'B, (6.7)

where we have also adopted a vector representation for the
driving fields. The solution of (6.6) and (6.7) is immediately
found to be

2¢€

{E—ia)R‘”;B},
I—R(”
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2 —1

=1 Fw?

which expresses the charge density S and the current density

I explicitly in the externally applied fields E and B and the
surface-shape matrices R "', R®, and R .

For vanishing external fields, e.g., E = 0 and B = 0, the
charge and current distributions also vanish, as can be seen
explicitly from Eqs. (6.8) and (6.9). Hence the charges and
currents are indeed confined to the surface by the external
fields. Remember that we have excluded the static case
® = 0, for which we can have charges on a surface without
external fields. Furthermore, we can identify the resolvents
(1—-R?)~'and (1 — R™)~'astheoperatorsthataccount
for the redistribution of the charges and currents, respective-
ly, as resulting from the Lorentz force between charges and
between currents. The coupling of charges and currents,
which is the Faraday induction, is incorporated in the R ¥-
matrix.

(6.9)

VII. THE REFLECTED FIELDS

The incident field induces charges and currents on the
surface, and these oscillating charges and currents emit radi-
ation, which are the reflected fields. In this section we ex-
press these fields in terms of the expansion coefficients S, ;
and I, , as they are given explicitly in the previous section.

In Egs. (2.12) and (2.13) we expressed the reflected
electric field E(r) — E(r)™ in terms of ¢(r) and i(r), and
similarly B(r) — B(r)™ in terms of i(r). With (3.6) and
(3.7) we can rewrite these equations in a way that o(r)n(r)
and i(r) Xn(r) are the source fields, and then we can apply
(5.1) and (5.2) in order to find an expansion on the spheri-
cal set. However, the resulting expressions are not transpar-
ent, since they will involve the Green’s function and its gra-
dient. In order to achieve a more comprehensible result, we
expand the Green’s function on the spherical set. We write™®

G(rr))

= 4mik 3 h OkEQ);), Y(Q),, jkr), Y (Q)E,,
Im
(7.1)

where 4 [ and j, are spherical Bessel functions. Here the
convention is that we choose the origin of our coordinate
system in the dielectric, and in such a way that the inequality

s, >r (7.2)

holds for every (4,02). The vector r is the position in the
dielectric, where we wish to evaluate the reflected fields. The
expansion coefficients S,,,,.; and I,,,.; depend on the position
of the origin, so both the charge and current distributions
and the reflected fields must be evaluated with respect to the
same coordinate system. Futhermore, restriction (7.2) must
hold in order to apply the series expansion (7.1) of the
Green’s function. For a given r, this can always be arranged.

The solution for the fields can be cast in an appealing
form by the introduction of the source-term vectors

S[(r/ji) = 2 SImrA €., (73)
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IV = ZI,mMeT. (7.4)
In view of (5.1) and (5.2), these S{*’ and I{?’ are just the
expansion coefficients of f(Q),o(Q),n(Q), and f(Q),
i(0)); Xn(Q), after an expansion of these fields onto the set
of spherical harmonics, but without a decomposition along
the basis vectors e, . Futhermore, we define the vector

Py = —inﬂf(nuY(m,m ¥Q),,,

X h M(kEQ)),n(Q),, (7.5)

which is a surface integral over the region A. It is the inte-
grated normal vector n(£2), times the appropriate weight
functions. This vector pj), depends only on the shape of
the surface. After these preliminary definitions, we can write
for the reflected fields

E(r) — E(r)i™
= S B SV, V(O
€ Iml'mai
_iwﬂkuzapl(;)lm XLRjkr), Y(Q)E,,, (7.6)
B(r) — B(r)™
=pk S (B XEEVik) Y Q). (17)

Imi'm'A
These explicit expressions for the fields that are emitted by
the surface charge and current distributions exhibit a clear
separation between the source terms S{2’ and I}’ and the
redistribution, due to the surface geometry, which is ac-
counted for by the vector p{).,... The spatial distribution is
represented as an expansion in the spherical waves j(kr),

Y(Q)*, and Vj(kr),Y,, (Q)*.

VIil. SURFACE MULTIPOLES

We can elucidate the significance of the expansions
(7.6) and (7.7) for the reflected fields by the introduction of
the surface multipoles. To this end we define the multipolar
moments of the charge and the current distributions as

=_ Z pfllrr)n Im Iu'n)l’r (8'1)
€ I'm'a

Jim =1k 3 D XTI, (8.2)
U'mA

where C,,, is a scalar and J,,,, is a vector. These multipolar
moments represent the charge and current distribution of
the complete surface, not just in one region A. The emitted
fields now attain the form

E(r) —E(r)™ = Z C, Vjkr), Y(Q)E,
im
— 03 3,jkr), Y(D)F,,  (83)
Im
B(r) (8.4)

—B(r)™ =Y J,, XVj(kr), Y(D)},,
Im
which greatly resembles the multipole expansion of the fields

emitted by a charge and current distribution in a restricted
region of space. The distinction is of course that the source
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terms C,,, and J,,, here gain contributions from everywhere
in space, rather than from a localized area. This results effec-
tively in an exchange of the spherical Bessel function
h"W(kr), with j(kr), in the expansion of the Green’s func-
tion.

The surface multipolar moments C,, and J,, are not
independent. From the fact that the fields obey Maxwell’s
equations, as they do by construction, it follows that they are
subject to some constraints. From V+(E(r) — E(r)"™) =0
we readily derive the relation

i‘/aclm
1—1

= e—_— z E (lmlT]l— IIU)JI_ l’ﬂ-.e::
21— 1 p==TU-1"7

=

R R Imlr|l + 1u)d *
+ (Umlr|l + 1) P
7 +3 y:§+n2 e

(8.5)

for a spherical basis set e.. Here (/ml7|l/ 4+ 1) denotes a
Clebsch—-Gordan coefficient. The constraint (8.5) can be
considered as the surface-integrated form of charge conser-
vation (V-j = iwp) for the surface charge density o(r).

IX. CONCLUSIONS

We have studied the charge and current distributions on
the boundary of a perfect conductor with a dielectric, as they
are confined and redistributed there by an externally applied
electromagnetic field. The surface was allowed to have an
arbitrary shape, and we did not impose any periodicity con-
dition. We obtained closed-form and exact expressions for
o(r) and i(r) everywhere on the surface. This was accom-
plished by deriving a set of inhomogeneous Fredholm equa-
tions of the second kind for o(r)n(r) and i(r) Xn(x) from
Maxwell’s equations, and subsequently solving these equa-
tions by an expansion on a discrete spherical set of basis
vector functions. The solution involves surface-structure
matrices, the R-matrices, which are independent of the inci-
dent field. It appears that an operation of a resolvent (1-
R) ™" on the vector representation of the impinging field on
the surface yields the charge and current distributions. The
Faraday induction between the E and the B fields gives rise
to a coupling between the equations for o(r)n(r) and
i(r) Xn(r), and it was accounted for by the matrix R ©.

Next, the structure of the fields, which are emitted by
the oscillating charges and currents, was examined. The so-
lution was cast in the form of a spherical multipolar expan-
sion, and the multipolar moments were identified explicitly
in terms of the solutions for o(r) and i(r). The effect of the
surface geometry could be incorporated entirely by the ap-
plication of a surface-integrated normal-direction matrix
Pyt . In addition, it was shown that the multipolar mo-
ments for the charge and current distributions are related,
which reflects the charge conservation on the surface.
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APPENDIX: DISCONTINUOUS INTEGRALS

The integrals on the right-hand sides of Egs. (3.1) and
(3.3) are discontinuous if we pass r* across the surface.
Therefore, care should be taken in the evaluation of the limit
r* —r. In this appendix we give the details of the derivation
of Eq. (3.1). Then the results (3.2) and (3.3) are obtained
along similar lines. The limit to be found is

Int :fdA To(r)e* It —rirt — )

ik 1 ]
X - »
[|r+—r’|2 rt —r')?

withr* =r + n(r)& and §10. To this end we divide the sur-
face into a small circle with radius R and around r and the
remainder of the surface. This is illustrated in Fig. 2. For the
integration over the region outside the circle, the integrand
has no singularities, and we can replace r* by r. Inside the
circle, however, the factor in curly brackets is singular for
r™ —r'. This implies that we have to carry out the integration
before we take the limit §10. This can be done as follows.
First, for r’ inside the circle we can write

(AD)

(A2)
(A3)

since these functions vary negligibly over the singularity.
Next, we writert — r' = (r — r’) + n(r)é for the vector in
front of the brackets. Then we notice that the integral with
r — r’ vanishes because of the cancellation of contributions
fromband — b (see Fig. 2). This component disappears for
every 5,‘ and therefore also in the limit 610, which leaves us
with

o(r')=o(r),

eik\r vr\zl,

Int:J-dA "o(r')VG(r,r)

ik _ 1
|r+—r’\2 |r+_r/|3 :
(A4)

From Fig. 2 we see that [r™ —r'|> = |r — |2 + 6% After
substitution into the integrand, the integration is most easily
carried out in polar coordinates, which yields

ik 1
4 [ d _ ]
Circ]e ’r+ _r,lz Jr"— _r’f3

= 2m{1ikS log(R? + 8%) — ik log &
+8/(R*+ 68" —1}

+a(r)n(r)6f

inside

a’ |

circle

inside

(A5)
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FIG. 2. Geometry for the evaluation of the limit r™ —r. Around r on the
surface, we divide the surface into an infinitesimal circle of radius R, and the
rest of the surface. Then the integrals are split up accordingly. The normal
vector points from the surface into the dielectric and is multiplied by § > 0.
Wedenotedr* —r'by aandr — r' by b. The limit r* —r implies R>6 >0
and R—0. It appears that an integral over the small circle remains finite
whenever the gradient of the Green’s function occurs in the integrand.

In the limit R>6 >0 and R0, this integral acquires the
finite value of — 2, and its combination with Eq. (A4)
gives expression (3.1), which was to be proved.
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The relations on the electromagnetic field obtained by Teukolsky and Press for type D vacuum
space-times are considered; these are four second-order equations in two complex components
of the field with respect to a principal null tetrad. A rigorous geometric interpretation of these

relations is given, showing the essential role played by the Maxwellian character of the basic
null tetrad. It appears that, generically, the Teukolsky—Press relations are incomplete. Once
completed, their generalizations to the general Maxwell equations (with source term) with
respect to non-necessarily Maxwellian tetrads on arbitrary space-times are given.

I. INTRODUCTION

(a) Let ¢, ¢,, ¢, be the components of the electromag-
netic field F with respect to a principal null tetrad in a type D
vacuum space-time. Here we call Teukolsky—Press relations'
the following set of four second-order partial differential
equations in the two components ¢, ¢,:

Ty: 7o =0, Ty 7Teé,=0,

Ty Too + 720, =0, Ty T, + 7oy =0,
where the 7's are given, in the Newman-Penrose notation,
by

To=(D—€+€—2p0—p)A+pu—29)

—(6—-B—a—-2r+7)(6+7—2a),
o= +3r~B—a)(5+7—2a),
=D +3p+e—€)(D—p+2e),

and ~ is the operator which permutes separately the real
and complex vectors of the null tetrad. The two uncoupled
equations in (1), T, and T, were first given by Teukolsky?;
the remaining two, 7, and T, by Teukolsky and Press.’

The Teukolsky-Press relations were the starting point
to show® that the Maxwell equations can be integrated by
separation of variables in perturbed Kerr geometries. For
this reason, they play an important role in many problems
related to the Kerr space-times. It is the case, in particular, in
the problem of the perturbations of a Kerr black hole by
incident electromagnetic waves, first considered by Staro-
binsky and Churilov,* which could be studied in detail (see
Chandrasekhar’).

But, in spite of their simple derivation, the Teukolsky-
Press relations are not easy to interpret: derived from the
Maxwell equations, one does not know, conversely, to what
extent the Maxwell equations are implied by them.

On the other hand, some authors®’ have given Teu-
kolsky-Press-like relations in the Kerr-Newman space-
times, but the precise conditions under which the Teu-

(H

(2)
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kolsky-Press relations may be generalized to other
space-times have not yet been found.

This paper answers both problems: we find a rigorous
geometric interpretation of the Teukolsky—Press relations
and their connection with the Maxwell equations, and we
give their generalizations to arbitrary null tetrads and arbi-
trary space-times.

(b) For this task, we need two important notions: those
of Maxwellian structure and of conditional system associated
to a given differential system.

It is weli known that a electromagnetic field (arbitrary
two-form) selects algebraically, at every point of the space-
time, a pair of orthogonal two-planes which, in the regular
case, define a 2 + 2 almost-product structure.®'° The Max-
wellian structures are the 2 + 2 almost-product structures
defined by the regular solutions to the vacuum Maxwell
equations.

On the other hand, let D, (&4,¢,,64,) and D,(¢,,¢,) be
two differential systems in the ¢’s. We shall say that D, isa
conditional system for D, if all their solutions (&,,$,) may be
completed to solutions (@,,¢,4,) of D, and if, conversely,
all the solutions (@,,¢,,6,) of D, are such that (¢,,4,) are
solutions of D,.

We shall see here that the Maxwell equations always
admit a conditional system in ($,¢,) that is, generically, of
third order. Moreover, this system degenerates to a second-
order system if, and only if, the basic null tetrad is associated
naturally to a Maxwellian structure.

The principal null tetrads of the type D vacuum space-
time are associated to a Maxwellian structure. Consequent-
ly, the conditional system admitted there by the Maxwell
equations is a second-order one. Then, its comparison with
Egs. (1) and (2) shows that, up to a missing equation, the
Teukolsky—Press relations on the type D vacuum space-times
are nothing but the conditional system in ($,¢,) admitted by
the Maxwell equations.

The missing equation in the Teukolsky—Press relations
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is identically verified on the solutions of the Maxwell equa-
tions which are invariant under the isometry group of the
Kerr metric. This is, perhaps, the reason why this equation
has been omitted up to now: the Maxwell solutions usually
considered in this context belong essentially to this class.

On the basis of our preceding results, the generalization
of the Teukolsky-Press relations to any null tetrad in any
space-time must be considered as given by the conditional
system in (¢@,,4,) associated there to the Maxwell equations.

It will be then easy to characterize the type D nonva-
cuum space-times in which the first two Teukolsky—Press
equations remain uncoupled.

(c) The paper is organized as follows: in Sec. II we in-
troduce ““a /a Rainich” the notion of Maxwellian structure
and then, give its version in the complex formalism. Section
III is devoted to finding the conditional systems in (¢q,8,)
admitted by the Maxwell equations, and Sec. IV gives its
explicit expression in terms of the spin coefficients. Finally,
in Sec. V, we compare them with the Teukolsky—Press rela-
tions and discuss the remainder of the results stated in the
precedent paragraph (b).

This paper contains some results published elsewhere,*!
but here we consider the general Maxwell equations (with
source term ), obtain the explicit form of the third-order con-
ditional system, and give detailed proofs of our statements.

1l. MAXWELLIAN STRUCTURES

(a) Let Q2 be a domain of the space-time (¥,,g), g being
a Lorentzian metric of signature — 2. To every two-form F
is associated the Minkowski stress-energy tensor T, given by
2T=F?+ (#F)? with F*=F X F, X being the cross prod-
uct,'? and * denoting the Hodge dual operator.’* The tensor
T verifies T? = y°g, where y is nonzero if, and only if, F is
regular." In this section we shall consider only regular two-
forms, so that the tensor P=y ~'T defines a 2 -+ 2 almost-
product structure. Let G be the simple unit two-form charac-
terizing the field of timelike two-planes of the structure

WwG?=1 tr*GxG=0, P=G*+ (xG) (3)

tr being the trace operator; the field of spacelike two-planes
is then characterized by *G, and one has'®

F=¢?*+*'G = ¢*(cos ¢G + sin ¢*G), (4)

where 2¢ = In 2y. Every regular two-form Fis thus biunivo-
cally characterized by its components {G,4,1}. Note that,
given the geometric component G, the energetic component ¢
determines the norm of the eigenvalues of 7, and both, G and
@, characterize T itself. Finally, among all the two-forms
associated with a given 7, the Rainich component i selects,
by a duality rotation, the particular two-form F.

(b) In terms of these components, the vacuum Maxwell
equations for F,

SF=0, 8xF=0, (5)
may be written®
dp=d, dp=1, (6)

where the one-forms ® and V¥ are functionals of the sole
geometric component G:
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O=%(6GN*G + 5xG N\ G),
VY=%(85GAG — 5+G N\ *G),

& being the codifferentiation operator and “ A *’ denoting the
exterior product.'®

From (6), the Rainich Theorem® follows: A simple and
unitary two-form G is the geometric component of a (local)
solution to the vacuum Maxwell equations if, and only if, it
verifies the equations

dd =0, d¥=0. (8)

The almost-product structures defined by such simple
and unitary solutions to Eq. (8) will be called Maxwellian
Structures.

To every Maxwellian structure, say G, the first of rela-
tions (6), d¢ = &, associates a (one-parameter, additive)
family of energetic components ¢, characterizing a (ho-
mothetic) family of energy tensors 7. In fact, it may be
shown that this relation is strictly equivalent to the conserva-
tion equation 8T = O (Ref. 17). In a similar way, the second
of the relations (6), dy = W, associates with G a (one-pa-
rameter, additive) family of Rainich components ¥, charac-
terizing (up to a homothecy) a family of two-forms Frelated
by a constant duality rotation. In fact, it may be shown that
this relation is strictly equivalent to the Rainich’s complex-
ion equation. The set {G,#,1/} then defines the two-param-
eter family of solutions to the Maxwell equations having the
same almost-product structure.

(¢) The form (6) of the Maxwell equations may be easi-
ly obtained in the complex vectorial formalism.'® Let us con-
sider the complex two-forms Z 7 (I = 0,1,2) given by

Z°=mAn, Z'=nANl—mAm, Z*=IAm,

where {/,n,m,7} is a complex null tetrad; since the Z ’s are
self-duals, *Z ' =iZ’, the basis {Z',Z"} of the complex
two-forms separates invariantly the self-dual and anti-self-
dual parts of every two-form W: W= W,Z'+ W,Z"'. In
particular, for every real two-form F, the complex two-form
F=F — i»Fis self-dual and its components in the basis {Z 7}
will be designed by ¢,: F=¢,Z* (I=1,2,3).

The general Maxwell equations §F = J, 5+F = 0, now
may be written in the form

J=6F=58{¢,Z} =¢,6Z" — i(d,)Z" + SH.

Contractingby Z ' and takingintoaccountthatZ ' x Z ' =g,
one finds that the general Maxwell equations are equivalent
to the system

(7

d¢, = h+ o, )]
where
h=i(6Z")Z', w=i(6H—-NZ', H=¢,Z°+ ¢,Z>
(10)

In order to formulate the Rainich Theorem in this for-
malism, let us consider the almost-product structure asso-
ciated to a null tetrad, defined by the element Z ! of the corre-
sponding self-dual basis, Z ' = G — i*G. The two-form G is
the geometric component of every two-form F, having the
expression (4), and one has F, = ¢%Z " with ¢° = ¢+,
that is H = 0: The vacuum Maxwell equations for F, are
then
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ding? =h,
and their (local) integrability condition is
dh=0. (12)

Expressing Z ! in terms of G in the definition (10) of A, and
taking into account that *(vAA4) = — ( — 1)?i(v)*4 for
every one-form v and every p-form A4, one finds
h =@ + i+V¥, where ® and ¥ are the functionals of G given
by (7). We then have the following.

Proposition 1 (Rainich Theorem): An almost-product
structure Z' is (locally) Maxwellian iff the one-form
h=i(8Z")Z ' is closed: dh = 0.

Let us consider the component (dA), of dh in the basis
{Z',Z}. From the identity (4,dv) = 8i(v)A4 + i(v)84 and
the orthogonal properties of the Z’’s, one has

—2(dh), = (Z'dh) =6i(W)Z' +i(h)6Z'
=8Z'+2(8ZNHWZ'=0,
and thus we have the following.

Proposition 2: The differential system dh = O character-
izing the Maxwellian structures consists of five second-order
complex equations in Z .

Considered as equations on the spin coefficients of a null
complex tetrad compatible with the Maxwellian structure,

they are first-order equations; their explicit expression may
be found elsewhere.'?

(1)

I1i. CONDITIONAL SYSTEMS FOR THE MAXWELL
EQUATIONS

(a) The differential system (8) defining the Maxwellian
structures is satisfied by the component G of all the solutions
(0,4,G) to the vacuum Maxwell equations (6) and, con-
versely, all his solutions G may be completed to solutions
(¢,4,G) to the Maxwell system. In other words, in order that
the Maxwell equations, considered as an (overdetermined)
system in the two unknowns ¢ and 9, be compatible, it is
necessary and sufficient that the system (8) in G holds. We
give the following definition.

Definition: Let D,(x,y) and D,(y) be two differential
systems in p unknowns x and ¢ unknowns y; let S, CF*?*1
and S, C F'? be their corresponding spaces of solutions, and
let r: FP* 9 F9, (x,y)—(y) be the natural projection. We
shall say that D, is a conditional system in the y’s for D, if
7(S;)) =95,

Thus, the Rainich Theorem may be equivalently en-
ounced by saying that the Maxwell equations admit a second-
order conditional system in G.

(b) Let us now consider the general Maxwell equations
(9) in the unknowns ¢,. By differentiation, one has

O0=dp, ANh+ ¢,dh +dw,
and, taking into account (9), it follows that

Q+¢,dh=0, (13)
where
O=dow + o Ah. (14)

Thus when dh does not vanish, a necessary condition for the
existence of @, is that the two-forms €} and dA be proportion-
al:
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Qedh=dhe . (15)

In such a case, the sufficient conditions are obtained by im-
posing that the proportionality factor between both two-
forms be effectively a solution of Eq. (9). These conditions
are first-order equations in  or, from (14), third-order
equations in (¢q,¢,). When dh vanishes, we have (locally)
h = d In ¢ and Egs. (9) may be written d(¢,/¢7) = w/4°,
whose integrability conditions are ) = 0. We have shown
the following.

Theorem 1: The Maxwell equation always admit a con-
ditional system in (¢g,d,). 1t is, generically, a third-order
system, and it reduces to a second-order one if, and only if,
the almost-product structure associated to the self-dual basis
is Maxwellian: dh = 0. In such a case, the system is given by

Q(¢o¢,) =0. (16)

For every solution (¢,¢,) to (16), there exists a family
of functions which complete it to solutions to the Maxwell
equations. If ¢, is such a function, all the others are of the
form ¢, + ¢ where 4 is the general solution for the electro-
magnetic fields admitting Z ! as the complex geometric com-
ponent.

(c) Now consider a non-Maxwellian geometry and let X
be any two-form such that (X,dh) 0. If Egs. (15) are veri-
fied, then, according to (13), we have

6, = — (Q,X)/(dhX),
and Egs. (9) impose
(Q,X)d(dh,X) — (dh,X)d(Q,X)
= — (Q.X) (dhX)h + (dh.X)’w.
After rearranging terms, these equations may be written in
the form
(X (X){QeVdh—dheVQ
+Qeh®dh—dheweodh}
+ (i) (dh)y — i @i ()X e VX) =0, (18)

where /() and ' ) denote, respectively, contraction over
the first and last two-form elements of the tensorial basis.
From Egs. (15) and their covariant derivatives, it follows,
respectively, that the term in X ® VX vanishes and that the
tensor between brackets, which is in A?® T* @ A%, is sym-
metric in their antisymmetric components. Thus, as (18)
must be verified for any two-form X, we have the following.

Theorem 2: The third-order conditional system in
(dos@,) for the Maxwell equations is given by

QeVdh—-dhe{VQ —heQ+wedh}=0. (19)
To every solution (¢$,é,) to this system, corresponds a

unique solution (@,¢,,9,) to the Maxwell equations, the ¢,
being given by (17).

17)

IV. THE SECOND-ORDER CONDITIONAL SYSTEMIN
THE SPIN COEFFICIENTS’ FORMALISM

(a) Let {,,Q,} be the components of the two-form
with respect to the chosen self-dual basis {Z*Z"}. From the
orthogonalityproperties (Z%,Z?%) = 1,(Z',Z"') = — 2,and
the definition (14) of £, we have, for the component {2,
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—20Q,=(Z,Q) = (Z \wAh) + (Z'dw)
= —i(@)i(MZ'+8i(0)Z"' +i(w)8Z",

where the adjoint character of i( ) (resp. §) with respect to
A (resp. d) has been taken into account. But, from
Z'%Z"' =g and the definition (10) of # and w, it follows
I(W)Z'=6Z"'and i(w)Z ' = 8H — J so that we have
—2Q, = —i(w)8Z'+65(6H —J) +i(w)6Z' =0.
Consider now the component £}, and £),: the second-order
terms in ¢, and ¢, come from dw or, according to the defini-
tions (10) of w and H and the orthogonality properties of the
basis Z‘, from the antisymmetrization of Vdg,xZ°
+Vdg,XZ*% but Z°XZ°=Z*XZ?=0, Q,= (Q,Z?),
and 2, = (Q,Z°) so that Q, (resp. {1,) does not depend on
the second-order derivatives of ¢, (resp. ¢,). On the other
hand, it is clear that Q) depends at most on the first deriva-
tives of J, and, finally, denoting by ~ the operator which
permutes separately the real and complex vectors of the null
tetrad, ~2=1d, Z'= —Z',Z%°= — Z? one has J = J,
do= — b, so that, from the definitions (10) of 4 and w, it
follows that A=#% and &= —wo and, consequently,
Q = — Q. Taking into account all these results, we have the
following.
Proposition 3: The second-order conditional system in

(¢o:9,) for the general Maxwell equations is of the form

— Qo=Dypy + Dy, + F o =0,

— Qo=Dypo + Dy, + 5, =0,

O, =Dyp; + Dy — /o =0,

9251_)0¢2 + 1_)2¢o - /z =0,

1Q, + 91)5D1¢2 _D1¢0 - /1 =0,
where D, is a first-order derivation operator and the #,’s
are functions of J and its first derivatives.

(b) In order to obtain the explicit expression for the
components (20) of the two-form {2, in terms of the spin
coefficients and the directional derivatives associated to the
null tetrad, we need of some intermediate expressions. The
evaluation of the codifferentials of the Z ’’s, which may be
easily performed using Ref. 18, gives

6Z°=2i(0)Z° +i(0,)Z",

8Z'= —2i(0)Z° 4+ 2i(0,)Z7%,

8Z%= —i(0)Z' —2i(0,)Z?

where the ;s denote the following one-forms'®:

(20)

oo =71l+ KN —pm — om,

o, =yl +en —am — fBm,

o, =vl+7mn —Am — um.
The codifferentials of the tetrad one-form are
Sl= —(e+€)+(p+p), Sn=(y+7) — (u+0),
bm=—74+7+aT—-p, M= —7w+T+a—p,
and the action of the operator ~ on the o,’s is

Oy= —0y, Og= — 0,

Following Crossman and Fackerell,® we write

Dy =D+ (p—De—(g+Dp+ (r—1DE—sp,
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6 =6+ (p—-DB—(g+ 1)r— (r— a+s7,

and denote by A and 5",;, respectively, the transforms of

D and &, by the operator ~.

Taking into account the above expressions, the compu-
tation of relations (20) is not a difficult task; denoting by

7o=0631810 —D31AYy, 7= —D33ID;E,
70=2833830, T =D3%650 — (r+ 7D,
the second-order operators on the ¢,’s, the result is the fol-
lowing.
Theorem 3: In any space-time, the second-order condi-

tional system in (¢q,@,) of the general Maxwell equations,
Q) =0, is of the form (20), where

Dy=171y— v+ 04,

D, = — 283313 + 20D 3212 — 8k + Do,

Dy =1,—AD3%3 —5ALS — kv — DA,

D, =1, — k835 — k838 — 07 — bk,

D, =7, +xA2) +0(m+7) + Ax,

Fomrl' 4 81T 408+ DA,

F o=k + 03372 — D3I —aJ4,

FAi=DRI + 802+ (F+ 1) — (m+ P
V. THE TEUKOLSKY-PRESS RELATIONS AND THEIR
GENERALIZATIONS

(a) Let us consider, on any type D vacuum space-time,
the null tetrads associated to the Bel directions®® (principal
null tretrads). In the Newman-Penrose formalism,?! we

have
Y,=V¥, =V¥,=¥,=0,

(21)

(22)
k=v=0=A=0,
and the Bianchi identities become
d¥, =3V, h. (23)

Then one has dh = 0 and thus, according to Proposition 1,
the almost-product structure associated to the null tetrads is
Maxwellian.

For such space-times, the four Teukolsky—Press rela-
tions may be written in the form (1) with the values (2) of
the 7’s. On the other hand, the evaluation of Eqs. (20) under
the hypothesis (22), leads, in the source free case J =0, to
the equations

Q0 =T, Q =T, (24)
for 4 = 0,2 and
%(Ql‘f'(_ll) =7'1¢2—7~'1¢0=0, (25)

for 4 = 1. Thus we have the following.

Theorem 4: On type D vacuum space-times, the condi-
tional system in (ég,¢,) for the source-free Maxwell equa-
tions, associated with the principal null tetrads, consists of
the Teukolsky-Press relations (1) completed with the rela-
tion (25).

From (20) and (21) it is easy to see that (24) holds iff
relations (22) hold. For any type D space-time, we have the
following.

Proposition 4: The first two Teukolsky—Press relations
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T, and T, decouple if, and only if, the Bel directions of the
space-time are geodesic, are shear-free, and define a Max-
wellian structure.

(b) In the particular case of the Kerr metric, the first
two equations (1), in addition to being uncoupled in ¢, and
¢,, may be separated into radial and angular parts relative to
the Boyer-Linquist coordinates for the electromagnetic
fields which are invariant®? under the action of the two-di-
mensional isometry group. For these fields, the fifth equa-
tion (25) is identically satisfied when the first four equations
(24) hold. This is perhaps the reason why Eq. (25) has not
been (apparently) considered up to now. But if, in the same
geometric context, one wishes to consider, for example, non-
periodic time-dependent electromagnetic fields, then Eq.
(25) must be necessarily added to the usual Teukolsky—
Press relations (24) in order to insure the existence of ¢,.

(¢) Theorem 4 shows that, once completed, the natural
geometric generalization of the Teukolsky—Press relations is
our conditional system in (¢q,¢,). This is a manifold general-
ization: the second-order conditional system (20) extends
the validity of the Teukolsky—Press relations, step by step, to
noninvariant fields, to nonprincipal tetrads, to non-source-
free Maxwell equations, and to arbitrary space-times. Final-
ly, when the chosen null tetrads do not define a Maxwellian
structure, the third-order conditional system (19) must be
used instead of the second-order one.

'In preceding papers (see Ref. 11) we called them Teukolsky relations. The
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Two-cluster—two-cluster scattering amplitudes for ¥-body quantum systems are studied. Qur
attention is restricted to energies below the lowest three-cluster threshold. For potentials
falling off like » = ' ~? it is proved that in this energy range these amplitudes exist, are
continuous, and that the asymptotic completeness holds. Moreover, if the potentials fall off
exponentially it is proved that these amplitudes can be meromorphically continued in the
energy, with square root or logarithmic branch points at the two-cluster thresholds.

I. INTRODUCTION

Many-body scattering is less complicated at energies be-
low the lowest three-cluster threshold. Only two-cluster
scattering is possible in this energy range, which makes it
possible to use effectively two-body techniques. This paper is
devoted to proving various results on scattering in this ener-
gy range by stationary methods. The main tool in our ap-
proach is Eq. (1) of Sec. III, which is a kind of a resolvent
equation suited to the study of the many-body resolvent be-
low the lowest three-cluster threshold. It is closely related to
the Weinberg~Van Winter equation (see Refs. 1-3) and to
equations used to prove the asymptotic completeness for
three- and four-body systems by stationary methods in Refs.
4-6.

Probably the most interesting result of our paper is the
proof that threshold singularities of scattering amplitudes
below the lowest three-cluster threshold are of the square
root or logarithmic type. Sections III-V are chiefly devoted
to this proof. We assume there that the two-body potentials
fall off exponentially, which is the same assumption that in
the two-body case guarantees the existence of a meromor-
phic continuation of the resolvent for all energies. In fact, in
our method we express the N-body resolvent in terms of es-
sentially two-body objects whose analytic properties we un-
derstand better. We prove that many-body scattering ampli-
tudes can also be meromorphically continued across the real
axis onto the nonphysical sheet. Our proof is valid only for
the energy range below the lowest three-cluster threshold
except for the thresholds where square root or logarithmic
singularities may occur (the former for odd dimensions and
the latter for even dimensions). By a square root (resp. loga-
rithmic) singularity we mean that the function can be locally
continued analytically onto the Riemann surface of the
square root (resp. of the logarithm). Section V explains how
to extend our results to potentials with singularities charac-
teristic of the form boundedness condition.

It should be noted that results similar to ours have been
obtained by Balslev.” They are restricted to the case N = 3
whereas we can handle an arbitrary finite number of parti-
cles.

Various authors have studied analytic properties of two-
cluster—two-cluster amplitudes before. This was done by
Balslev,”® Hagedorn,” Hunziker and Sigal,'® and Sigal.!'
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Their methods though, with the exception of Ref. 7, went in
a different direction. They assumed both the dilation analy-
ticity and an exponential decay of the potentials and did not
obtain the information on threshold singularities that we
have. On the other hand, the dilation analyticity assumption
allowed them to study the scattering amplitude for the whole
energy range. In our next paper we will exploit the dilation
analyticity to study threshold singularities above the lowest
three-cluster threshold (Ref. 12). There are also some inter-
esting though less complete results on analytic properties of
other kinds of many-body scattering amplitudes—see Refs.
7, 8, 10, 11, 13, and 14.

Equation (1) of Sec. III can also be applied to a study of
quantum scattering below the lowest three-cluster threshold
for potentials that decay like » ~ ' 2. Those applications re-
quire almost no additional work and are given in Sec. VI.
They include a construction of a generalized eigenfunction
expansion outside a closed set E of measure zero, a proof of
the asymptotic completeness and a proof of the existence and
continuity of scattering amplitudes outside E (all those re-
sults are proved below the lowest three-cluster threshold and
assume that the potentials decay like r —' ~%).

Most of the results of Sec. VI are not new but our proofs
are entirely different from those contained in the literature.
A proof of the asymptotic completeness below the lowest
three-cluster threshold was found already by Combes'® and
Simon'®'” for some restricted classes of potentials. A simple
time-dependent proof of this fact for potentials that decay
like » ~ '~ was given by Enss.'®!® Recently Sigal and Soffer
proved®® the asymptotic completeness for the whole energy
range.

The existence and continuity of two-cluster—two-cluster
scattering amplitudes for the whole energy range outside of
the thresholds and bound states can be obtained by the so-
called commutator methods due to Mourre,?! Perry, Sigal,
and Simon,””> and Yafaev.?* Related results are also con-
tained in Refs. 24-27.

The stationary technique in the many-body scattering
that we apply has been used and developed by Faddeev,*
Ginibre and Moulin,” Howland,?® Sigal,”® and Hagedorn.®
Using this method one obtains explicit formulas that in prin-
ciple can be useful for calculating scattering amplitudes,
which can be regarded as an advantage of the stationary
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method over the time-dependent and commutator methods.
Another advantage of our approach is a theorem on a gener-
alized eigenfunction expansion below the lowest three-clus-
ter threshold outside an exceptional set E, a result that to our
knowledge has not been obtained by the other methods and
is not contained in the literature.

Il. NOTATION

We study a many-body Schrodinger operator acting on
L *(R*™) defined by

- NZ N NK
H= =2 om ,z_:. ;2

i<j

where x; is a d-dimensional vector pointing at the position of
the ith particle with mass m, and A, is the Laplacian in x;.

Throughout the paper we will assume the potentials to
be form bounded with respect to the free Hamiltonian with
an arbitrarily small bound, which implies that the Hamilto-
nian is self-adjoint.>°

Now we have to introduce some concepts that belong to
the standard folklore of many-body Schrddinger operators.
They are discussed in more detail in numerous papers on the
scattering theory, notably in Refs. 6, 29, and 31.

First we remove the center-of-mass motion to obtain the
Hamiltonian

H= — 2 —-"-+”§_‘,1V (x; —x)=H,+V,
i<j

where A, is the Laplacian corresponding to the ith coordi-
nate in some system of Jacobi coordinates and u; is the corre-
sponding reduced mass for i = 1,...,N — 1. This Hamilto-
nianactson L ?(X), where X denotes the spaceisomorphic to
RN =D that describes the relative motion of N particles.

Welet R(z) = (z— H) 'and Ry(z) = (z — H,) ™.

A cluster decomposition is a partition of the set
{1,2,...,N} into nonempty disjoint subsets called clusters. A
cluster decomposition will be denoted by capital letters such
as D and B. A subscript on a cluster decomposition denotes
the number of clusters in a given partition. D, CD; means
that D; refines D,, i.e., the clusters of D; are obtained by
further partitioning the clusters of D;. Note that D, C.D; im-
plies i>j and that for any D, we have D; CD,. A cluster de-
composition with V — 1 clusters may be also called a pair
and denoted by a Greek letter such as o or by (7).

For each cluster decomposition we define

N—1 A N—1

) A,;
(zj)ECD Y :Zl 2,U, P

i=1 ,

Rp(2)=(z—Hp)™'.
The Hamiltonian obtained from H), by separating the

cluster center of motion variables will be denoted by H P
This separation results in a decomposition of the space

LX) intoL2(X™) oL *(Xp,), where X® isisomorphic
to R““~? and X, is isomorphic to R*“~ . Here the first
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variables, denoted by xD", stand for intracluster degrees of
freedom and the latter, denoted by x,,, for intercluster de-
grees of freedom. If we represent the original Hilbert space as
the above tensor product we can write our cluster Hamilto-
nian as

H,=H"®1+18T,,

where T, is the kinetic energy of the c.m. motion of the
clusters.

Eigenvalues of H® for 1<i<N are called i-cluster
thresholds. The point zero is the only N-cluster threshold.
We denote the lowest i~cluster threshold for i >2 by &. The
set of two-cluster thresholds will be denoted by 2, and o,
will mean the lowest two-cluster threshold, which is at the
same time the bottom of the continuous spectrum. Elements
of L 2(X ™) that are the eigenvectors of H ” we denote by .,
and call channels. We denote the threshold corresponding to
the channel 4, by w, and the corresponding cluster decom-
position by D(a). If D(a) is a two-cluster decomposition
then the corresponding reduced mass of intercluster motion
we denote by i, and v, (z) will stand for (2u, (z — @, )"/
The generalized eigenvector of Hj,,, corresponding to the
channel ¢, with the intercluster momentum & we denote by
®, (k), explicitly

D, (k) (x) =@, (xP)exp(ikxpg, ) -
We define also
Ta =Wy + TD(a) =W, — AD(a)/zlua ¢

The scattering amplitude for the & — B scattering at the
energy A is given by the formula

L (kvkz) = (‘ba (kl)!( V— VD(a) )‘Dﬁ(kz))
+ lim (@, (k). (¥ = V) )RA + i€)

XV = Vpp )Ps(k3)),
where

Ta(pa (kl) —_-/I(I)a (kl), Tﬁ‘bg(kz) =/1¢B(kz),

and ( , ) denotes the scalar product. (See Ref. 32; for a rigor-
ous derivation of this formula see Ref. 10.)

We denote by Pj, the orthogonal projection onto the
part of spectrum of H 2 with energies below £ — €. We need
to use the family of projections P, instead of the projection
P3, because of a possible occurrence of the Efimov effect. If
this effect occurs in a more-than-three-particle system then
there may exist infinitely many two-cluster thresholds below
£ (see Refs. 33-35).

Here |x| means some fixed Euclidean norm of the vector

x. The symbols p?, p™?, and p,” will denote the operators of
multiplication by

exp(— b([x[*+ 1D'?), exp(—b(Ix"[> + 17,

and
exp( — b(|xp)* + 1),
respectively.

We also intoduce the Sobolev spaces H,, (R*)
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= (1—A,) ~™2L*R*), where A, is the k-dimensional
Laplacian.

IH. MAIN RESULTS

In Secs. HI-V we will require the potentials to decay
exponentially, which is expressed in the following assump-
tion.

Assumption 3.1: We assume that for any i/ and J,
|V;|"2(p%) " is compact from H,(X?) to L*(X?) for
some ¢ > 0.

The main result of our paper is contained in the follow-
ing two theorems.

Theorem 3.2: For any b > 0, pr (z)p” can be continued
meromorphically across the real line below £ outside of 2. If
wef), o < £, and the dimension is odd, then p°R (z)p® can be
continued meromorphically onto a neighborhood of @ on
the Riemann surface of (z — @) !/2. If the dimension is even
then the same is true with log(z — ) replacing (z — w)'/2.

Theorem 3.3: Fix two unit vectors &, and é,. Fix two
channels ¢, and ¢;. Then the scattering amplitude
top [ Va (2)81,v4 (2)€,] can be continued meromorphically in
z across the real line below £ outside of Q. If weQ), w < £, and
the dimension is odd, then the scattering amplitude can be
continued meromorphically onto a neighborhood of @ on
the Riemann surface of (z — ») /2. If the dimension is even
then the same is true with log(z — ) replacing (z — w) /%
This means that at each two-cluster threshold that lies below
the lowest at least three-cluster threshold the scattering am-
plitude has at worst a square root branch point singularity
for odd dimensions and a logarithmic singularity for even
dimensions.

Most of our paper will be devoted to proving these re-
sults. Throughout this section though we will not give full
proofs. We will assume in this section that ¥ (p?¢) ~'eL =.
The case of singular potentials will be studied in Sec. V.
Moreover, we defer some technical lemmas to Sec. IV.

Lemma 3.4: We can find a>0 such that
(pP*) ~'P5, (pP»*) ' is bounded.

Proof: By the Hunziker-Van Winter-Zhislin (HVZ)
theorem, the part of the spectrum of H - associated with the
range of P}, is pure point and lies at least a distance € below
the bottom of the continuous spectrum. It is well known (see
Ref. 3, Theorems XII1.39 and 40) that the eigenvectors with
such energies belong to the domain of the multiplication by
exp(a|x”:|) for some @ >0 (@ may depend on€). Q.E.D.

From now on we will usually omit @ in p”>* and we will
assume that it has a value determined for a given € by the
above lemma. We will also usually omitzin R(z) and R, (2)
and €in P, .

Lemma 3.5: Let ¢, be a two-cluster channel, w, the
corresponding threshold, and o ¢ D(«). Then we can find
b > 0 such that for any unit vector &, the function

2=V, (p") TP, [v, (2)2]
defined for real z greater than w, can be continued analyti-
cally onto a neighborhood of the real line outside of w,,. It

can also be continued onto a neighborhood of w, on the
Riemann surface of (z — @, )'/2.
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Proof: We easily see that ¢, and V, withod D, (a) have

enough falloff to make wup for the growth of
exp[iv, (2)éxp, 4 ] and (p°) 7 QE.D.

Lemma 3.6: (a) Ifi>3, then
( Va )I/ZRE,-‘ Val |1/2 , ( VU)I/ZRE‘»PEZ 1 VU: |1/2 ,
and
( Va ) 1/ZRE,-I)EZ (pEz) 'll Va’ Il/2
are analyticon C — [§, ).

(b) (V)R (1—Pg)|V,|"? is analytic on C
—[£—€,x).

Proof: (a) By the HVZ theorem the spectrum of an at
least three-cluster Hamiltonian belongs to [£, ).

(b) The proof is similarly obvious. Q.E.D.

Lemma 3.7: The following expressions can be contin-
ued analytically onto a neighborhood of the real line outside
of the eigenvalues of H " [if w is an eigenvalue of H > then
they can be continued onto a neighborhood of @ on the Rie-
mann surface of (z — w)'/? for an odd d and of log(z — »)
for anevend]:

(a) (V,)'?Rp, Pr, (p"™) |V, |2,

where o, o' § F,,

(b) pEz( Va ) I/ZRF2PF2 (sz) —~l| Vo” |1/2,

where 0'Q F,, E,#F,,
and
(€) (V,)' PRy P, (p™) |V, |'2,

where E,#F,, 0’4 F, .

Proof: The lemma follows easily from the proof of
Lemma 1 of the Appendix to §X1.6 of Ref. 31, which says the
following: p°(z + A)~'p® can be analytically continued
across the positive real axis onto the nonphysical sheet as
long as Im(z'/?) > — b. See also Ref. 36. Q.E.D.

Now we want to introduce our basic equation for the
resolvent. If k >/ and D, C D, we define

RDk(VDkﬁl - VDk)RDkV |” R

Ap,
D,CD, C--CD,
X(VD’ — VD,+1)RD, .

Statement 3.8: Suppose that z is sufficiently large and
negative. Then the full resolvent is equal to the following
convergent series:

LDk,D, =

0 N-—-1
R=3 3 ) B,
m=1k=2p\ ,CD}PD}_,C--CDy 'pDY_,CcD}
V., L v
X Vor_ Foy 01V p3
XLy vy Eogoioy Yoy Loy optRo-

Proof: Expand both sides of the above equation by using

R=3S Ry(VRy)"

n=0

and

Rp =3 Ro(VpRp)".

n=0

Then compare both sides term by term. Q.E.D.
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Statement 3.8 is also an immediate consequence of Eq.
IV.4 of Ref. 6 and we refer to Ref. 6 for a more detailed
derivation and discussion of similar resolvent identities.
Moreover, it is related to the Weinberg—Van Winter equa-
tion (see Lemma 4.2 and Chap. XII5 of Ref. 3).

Asequence D, CD, _, C--- CD, will be called a string.

Now we transform our expression for R in the following
way: for i> 1 each ¥ - that appears between R pi—1 and

R | we replace with

DYy

[(1=Pp-1) I Vux;.|l/2 (Vo)

M(DszN~ DIEGy_ ) =
D, DEy_ | CEDFy_ CFPGy_,

where both “-”” and *“ X’ denote multiplication. We expand
all the square brackets. Each summand of our series we fac-
tor by “cutting” it in the following places: (i) at each “X”
and (ii) ateach ““-” that “belongs” to ¥, - unless thereis a
“X” at VDSvt‘l'

Our aim is to convert the series into some matrix formu-
la. We introduce a square matrix M(z), a row vector 4(z), a
column vector B(z), and a scalar C(z) with entries from
B(L*(X)) and with indices of the form (D,E, ) or
(Ey_ 1)

pDZ(VENAl )I/ZLEN_l:E2 (1 _PEZ)VFN-ILFN-thsz (sz)_l | VGN—l | 2

_+_ Z pDz(VEN_,)1/2LEN_1,F2PF2(,0FZ)_1| I/G[\,7l |1/2,

D,DPENy _\CFDPGy_,

M(EN—- D(FGy_ ) =
Ey _CE,DFy_,CFDGy_,

M(DZ,EN_.MGN_.) =
D,DEy_|CE,DGy_,

M(EN_ D(Gy_) =
Ey _1CE DGy,

(VEN—I )I/ZLEN_pEz(l ——PEZ)VFN—ILFN—IvFZPFz (sz)'l | VGNAI | v ’

pDZ(VENfl)l/zLEN—hEz(l - PEz) ] VGN—I | V2 ’

(VENfl)l/zLEprEz(l _PE:) | VGN—I | 2 ’

—_ F,y—1 172
A(FZ’GNV—-I) - ROVEN—ILENvlvEZ(l —PEz)VFfoLFN~1vF2PF2 (p 2) ' VGNfl l
Ey _\CEDFy_ CFHRDPGy_,
Fy—1 172
+ z RoVe, Lr, .rPr(p™) | Voo _, | ’
Fy _CEDPGy_,
N-—-1
— 12 — D. 1/2
A(GN,,) - ROVEN,ILEN_,,E2 (1 - PEZ) , VGN_I | ’ B(DZ,ENfl) - P 2( VENA,) LEN— vE; ?
Eny_1CEDGy_, i=2 D,PEy_ ,CE;
N-—-1 ; N—1
— 1/2 —
B(EN_l) - z (VEN—I) LEN—I'Ei ’ C_R0+ z ROVDN_lLDN,pD,- .
i=2 Ey T CE, i=2 by o,
I

Using geometric series to resume the expression for R we
obtain

R(z) = A(2)(1 = M(2))"'B(2) + C(2) . (D

The above equation strongly resembles formula IV.10
from Ref. 6, which was used by Hagedorn to prove the
asymptotic completeness for the cases of three and four
bodies. Nevertheless, our equation is not a generalization of
Hagedorn’s. Below we list the most important differences.

(1) Hagedorn was interested in the whole spectrum of
the Hamiltonian whereas we deal only with its part below
the lowest three-cluster threshold. Thus the only projections
that appear in our equation are P, ’s while Hagedorn had to
take into account also Pp, ’s. This fact explains partly a rela-
tive simplicity of our equation in comparison with Hage-
dorn’s.

(2) Every entry of our M(z) is built out of what we call
one- and two-string expressions. This implies compactness
of our M(z). Some of the entries in Hagedorn’s M (z) are not
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compact; it is the square of his M(z) that is compact.

(3) Our M(z) is indexed by cluster decompositions—
Hagedorn’s by strings. Because of this difference we need not
use the so-called symmetrization that Hagedorn had to use
(see Eq. IV.13 of Ref. 6).

(4) The hardest problem about resolvent equations
used in the scattering theory is how to control the singularity
of the free resolvents that appear in those equations. Here we
briefly describe some facts that are commonly used in this
context.

(a) The function

zr—>exp( — b |x|)Ry(z)exp( — b |x]|)

can be continued analytically across the positive real
line outside zero (see Lemma 3.7).
(b) The function

Z > (1 + IX|) —1/2—eR0(z)(1 + |X|) —1/2—€
is norm continuous up to the positive real line outside

zero (see Lemma 6.3).
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(c) Suppose that x, and x, are some coordinates and
the dimension is bigger than 2. Then

2> (14 |x,)) 7 7R (2) (1 + |x,]) ~ 1€

is uniformly bounded and strongly continuous up to the

positive real axis including zero. In some cases we can

replace “strongly continuous” by “norm continuous.”

(See Lemma 113 of Ref. 6 and the proof of Theorem

XII1.27 of Ref. 3.)

Our equation is adapted to the use of (a) or (b) whereas
Hagedorn’s is adapted to the use of (c).

Now we are ready for the proofs of main results of our
paper.

Proof of Theorem 3.2: Fix € > 0. (Recall that € enters in
our definition of P;, .) First we prove that, for any 5> 0,
M(z), pA(z), B(z)p®, and p®C(z)p® can be continued ana-
lytically across the real line below § — € outside of Q and if
wel) and @ < & — € then they can be continued analytically
onto a neighborhood of w on the Riemann surface of
(z—w)"? orlog(z — ) (depending on the dimension). A
direct application of Lemma 3.6 proves this fact for the fol-
lowing terms: M, r. 6, 0 My Gy > and
p’4(Gy _ ). All of the remaining terms contain R, P, and
have a complicated structure involving one or two strings.
To prove their analyticity we have to apply also Lemma 3.7.
But before this we have to do some algebraic manipulations
on such expressions. These manipulations involve a repeated
use of the resolvent identity and some combinatorics—
proofs are given in the next section (see Consequences 4.3
and 4.7).

Next we need to show that M (z) is compact and goes to
zeroasz — — oo. Itisenough to show this for the following
expressions:

(Ve,_, )I/ZLEN_‘,EZ (z2)(1 — Pg) | Ve, | 172
and
Ve, )?Lg, 5 (2)Pg, (p=) 7! I Ve, | | 2

where E, DG, _,. Suppose that we take a sufficiently large
negative z. Then we can expand all the R ’s that appear in
the above expressions in convergent perturbation expan-
sions. Every term of these expansions can be proved to be
compact and go to zero as z— — co by mimicking the proof
of Lemma 3A of §5, Chap. XIII, Ref. 3. (All these terms
correspond to the so-called connected diagrams in the ter-
minology of Ref. 3.)

Thus M(z) is compact for large negative z. But sinceitis
an analtyic function on a connected domain, its values have
to be compact on its whole domain.

By the analytic Fredholm theorem (1 — M(z))™' is
meromorphic on the domain of analyticity of M(z). Finally
we apply Eq. (1), which, since we can take € arbitrarily
small, implies the desired analytic properties of
pR(2)p. Q.E.D.

Proof of Theorem 3.3: We apply Theorem 3.2, Lemma
3.5, and the definition of the scattering amplitudes. Q.E.D.

IV. ONE- AND TWO-STRING EXPRESSIONS

We begin with an essentially combinatoric lemma.
Lemma 4.1: (a) Fix D, and D;. Then
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(Vp,_, —Vp,) = VD, —~Vp, -
D,CD,_ ,CD;
(b) Fix D,, b, and c. Then for some numbers 4(a,b,c)
we have

(Vp, —Vp,) =A(abc)(V—Vp ).

D,CD,CD,

Proof: (a) If o C D, or cq D, then ¥, does not belong to
Vo._, — Vb, Assume it is not the case. Then o belongs to
exactly one D, _; such that D, CD, ,CD,.

(b) If cCD, then V}, — ¥V}, does not contain V. Let
od D,. The number of D,’s such that D, CD, and 6 CD, is
equal to the number of partitions of an (¢ — 1)-element set
into » nonempty subsets. The number of D_’s such that
D, CD, is equal to the number of partitions of a b-element
set into ¢ nonempty subsets. Here 4 (a,b,c) equals the prod-
uct of both these numbers. Q.E.D.

The terms in p°4, M, Bp®, and p°Cp® that we study fall
into two categories: in the first one there are only products
involving one long string, in the second one there are sums of
products involving two strings. First we study a typical
expression involving one string.

Lemma 4.2: Fix D, and D, _ ,,. Then

Lypop, ., = C(k,j,k——m)RD]_,
DkCDjC Dy _
where C( ) are some numerical coefficients.
Proof: We prove our lemmma by induction on m. For
m = (Q the lemma is obvious. Assume it to be true for some
m. Then

LDk’Dk —m—1

= z RDk (Vp

Dy CDy 1 CDy .y

VDk )LDk‘ 2Dk _ 1

k—1 —

— D Clk—1,jk —m —1)R,,

DCDy \CDCDy 4

X(Vp,_, —Vp IRy

= S Clk—1jk—m—1DRy,

D, tp,ED, _,_,

X (Vp, = Vp )Ry,

= Y Clk—ljk—m—1)(Rp—Rp).

D, ED,EDy

We used in the following order: the induction step, Lemma
4.1 (a), and the resolvent identity. Q.E.D.

Consequence 4.3: Let € > 0. Then for any b > O the first
term in My g, k6, the first term in p°4 .o,
Bp?®, and p°Cp® can be continued analytically across the real
line below £ — € outside of 2. Moreover, if we) and
® <& — € then they can be continued analytically onto a
neighborhood of @ on the Riemann surface of (z — @) !/ for
an odd d and of log(z — w) for an even d.

Now we look closer at two-string expressions. Cluster
decompositions that belong to the left-hand side string will
be denoted by B, and those that belong to the right-hand side
string will be denoted by D;. We break up our study into a
series of lemmas.
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Lemma 4.4: Fix B,, and D,. Then
l‘B,,,,BJ ( I/B’2 - VB, )'RDZ

B,,CB,CB,
= ; Q,V,Rp +Y+ZR, ,
od D,

where Q, and Y are sums of R P with jgreater than2 and Z
is some number.

Proof: Consider the expression on the left-hand side of
the equation in the lemma. By Lemma 4.2 it is equal to

C(m’j’3)RBj(VBZ - V33 )IeD2 .

B, CB,CB,CB,

By Lemma 4.1(b) it can be rewritten as

S C(m,j,3)4(j;3,2)R, (V — V; )Ry, .

B,CB,

N-2

12 _
VBN-lLBN_l»Bm+1 (VBm Ve

m=2 By ,CB,, ,CB,CB,CB,
Bm+ ICDI; qu:Dz

Now
RB,( V— VBj)RDZ

=Ry (V= V)R, +Rp —Ry . QE.D.

Lemma 4.5: Fix By _, and D,. Then

VIB/A?— lLBN~ vB; ( VBz - VBJ )RDz

By_,CB,CB,#D,

= C, VYR, +C,
odq D,
where C,’s and C are sums of products of ¥’s, ¥'/?s, and
Rp,’s with [ greater than 2.
Proof: Assume first that By, _ ; CD,. The expression can
be rewritten as

YL 5 (Vy, —Vp IRy, .

Now we apply Lemma 4.4 and notice that ¥V — ¥V ., consists of V,’s with 0q D,.

Now let B, _; & D,. Then we can apply Lemma 4.4 immediately.

Lemma 4.6: Fix By _ , and D,. Then

By _ ,CBngN_ 1€ D,

Vlijz_ 1LBN— 18; ( 1 - PBz ) VDN— ILDN— |'D2 =

QE.D.

Qa V;/ZRDZ + Y+ 2 ZBzPBzRDz ’

od D, B,#D,

where the Q,’s, ¥, and Zj ’s are sums of products of the ¥’s, ¥'/2s, (1 — Py )R, s, and RD;’s with j greater than 2.
Proof: First we apply Lemma 4.2to L, ,, . We get a sum that includes only terms R p, With j greater than 2 and R, .

The former we will include in Y, what is left has the form

VY2 C(N—122)Ly, 5 (Vs,— V5 )Rs (1—Ps )V, R,

By_ \CB,CB,DDy_,CD,

= s VY2 CIN—122)Ls, 5 (Vs —V3)

By_ CEB,CB,#D,

><[RD2 —PpRp — (1 =Py )Ry + (1 — Py )Ry,

After expanding the square bracket we can include the third
term in Y and the fourth one in Q,. The second one will
constitute Z. Up to a constant we are left with

VIBCVZ— ILBN— l’BJ ( VB1 - VB: )RD2 *

By_,CB,CB,#D,

The above expression is taken care of by Lemma 4.5. Q.E.D.

Consequence 4.7: Let € > 0. Then for any b > 0 the sec-
ond term in Mp g yro6y. > MEy_ ) (FGy_ ) and the
second term in p®4, F.Gy_ €an be continued analytically
across the real line below £ — € outside of 2. Moreover, if
we) and @ < & — € then they can be continued analytically
onto a neighborhood of @ on the Riemann surface of
(z — w)"/? for an odd d and of log(z — w) for an even d.
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s V‘,RDz] .

B,D0dD,

V. SINGULAR POTENTIALS

This chapter shows how to modify the proofs of Theo-
rems 3.2 and 3.3 if the potentials are singular and satisfy only
Assumption 3.1,

Lemma 5.1: Suppose the potentials are form bounded
with respect to the Laplacian with a zero bound. Let ¢ be an
eigenvector of H ? with the energy E below the continuous
spectrum. Then for some a > 0 we have (o) ~'¢eH, (X ©).

Proof: 1t is well known that for some a>0 we have
(p™*) ~'¢eL ? (see Ref. 3). We will drop all the reference to
D in our computations. We denote (p°) ~! by exp(F) and
exp(F)é by 5. We easily compute the following formula®’:

Adr = [V(VF) + (VF)V]dr — (VF)*¢p + exp(F)As .
We apply it to our Hamiltonian:
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(65 Hpr) = E(dpdr) + (¢F’(VF)2¢F) <.

Since (VF)? = (aV|x|)? = a” is bounded we can see that ¢,
belongs to H,. Q.E.D.

Lemma 5.2: For any b>0, p®(z + A) 7'p® can be ex-
tended to an analytic function on the part of the Riemann
surface of the square root or logarithm (depending on the
dimension) defined by Im(z!/?)> — b, with values in
bounded operators from H_, to H,.

Proof: First we see that

(—A+Dp’+A)"p°
= [(—Ap®) —2(Vp)V 4 p( —A—1)]
X(z+A)"'p®
=[(—8p") + z+ 1)plz+A) 'p?
+ (=2Vp")V(z+ A) "'p® — (p*)%

By mimicking the proof of Lemma 1 of the Appendix to
§XI.6 of Ref. 31 we show that the above expression extends
to an analytic family of bounded operators from L *to L ? on
the desired complex domain. This means that
p’(z + A)~'p®is analytic on the same domain as a function
with values in bounded operators from L ? to H, and, by an
analogous argument, as a function with values in bounded
operators from H_, to L? Now we apply interpola-
tion. Q.E.D.

Equipped with these two lemmas, we can easily modify
the proofs from Sec. III to include the singular potentials.
For instance, to prove Lemma 3.7(a) we write

(VU)I/ZRFZPFZ (1Y, Il/z
= [(Va)l/ZPF2 (sz)_l] [P?@PF:RFZP;:]
% [(P;:)_IPFZ (Y, |1/z]
=QY(2)Z.

Now for some a, b > 0 the term Z maps L ZintoH_,, Y(2)
maps H_, into H, and has the desired analytic properties,
and @ maps H, into L 2, which proves Lemma 3.7(a).

VI. ASYMPTOTIC COMPLETENESS AND EXISTENCE
OF SCATTERING AMPLITUDES

In this section instead of being interested in an analytic
continuation of the resolvent onto the nonphysical sheet we
are studying here just its continuous limit up to the real axis.
That allows us to weaken assumptions on potentials, which
instead of decaying exponentially have to decay only as
r~ !¢ The main link of this chapter with the preceding
ones is Theorem 6.4, which makes an extensive use of meth-
ods developed there. It deals with continuing the resolvent
up to the real axis. Related properties of the resolvent of the
Schrédinger equation were sometimes called a “limiting ab-
sorbtion principle” or a “limiting similarity principle” and
were studied in the context of the scattering theory or of the
absolute continuity of the spectrum (see, for instance, Refs.
6, 28, 29, 38, and 39). By using standard methods of the
stationary scattering theory and Theorem 6.4 we are able to
obtain various kinds of information about the scattering be-
low the lowest three-cluster threshold, such as the existence
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of a generalized eigenfunctiion expansion (Theorem 6.6),
asymptotic completeness (Theorem 6.7), and the existence
and the continuity of the scattering amplitude outside an
exceptional set (Theorem 6.8).

We need some additional definitions. If ¢, is a channel
then we define the imbedding J,, of L *(X,,, ) in L *(X) by
the following formula:

J.(f)=f® ¢,.

Then we define the channel wave operators:

+ = s-lim exp( — iHt)exp(iHp, 1) J, .

t—+ + o

Here E, (B) will denote the spectral projection of T,
corresponding to a measurable set BCR, and E,. (B) will
denote the spectral projection onto the absolutely contin-
uous part of the spectrum of H belonging to B.

Throughout this section § will be a fixed number greater
than 1. Let , ¥,, and ¥ be multiplication opera-
tors by [14[x]?1=%2% [1+ |xp*] %% and
[1+ |xP]?] ~ V2%, respectively.

We need some formalism enabling us to restrict Fourier
transforms to (d — 1)-spheres. Let .# (R“) denote the space
of Schwartz functions on R?. For v > 0 we define

7(v): L (R LS ,de)
by
(m(v) F)(@) = vV f(ve)

where ¢ belongs to the unit sphere S¢ ', Fis the Fourier
transform of £, and dé is the invariant surface measure on
S4—'CRe If R? in the above definition is equal to X, for
some two-cluster decomposition D then such a 77(v) will be
denoted by 7, (v).

Here H,, ,, denotes the space

(1 + ’xPZ)——n/Z(I _ A)AM/ZLZ.

Assumption 6.1: |V, |'?(y°) ~' is compact from H, to
L2

Proposition 6.2: Suppose § > 1. Then 7(v) extends to a
bounded mapping of H,;(R?) into L (5S¢~ ',dé). More-
over v— 7 (v) is norm Holder continuous.

Proof- See Ref. 5. Q.E.D.

We note also that if feL 2 then 7(v)f makes sense for
almost all v as an L *(S“~ !,dé)-valued measurable func-
tion.

Using the above proposition we can easily prove the fol-
lowing lemma (see Ref. 5).

Lemma 6.3: If A is not equal to 0 and €07 then
(A +ie+ A,;) ! has a weak limit as an operator from
H_,5intoH, ;.

Now we state the main technical theorem of this section.

Theorem 6.4: Suppose that Assumption 6.1 holds. Then
there exists a closed set EC [w,5] of measure zero such that

R(z) =Z(2) + Y Ry (2)Pp,Z), (2) ,
D,

where Z(z) and Z, (z) are analytic functions with values in
bounded operators from H_,;(X) into H,,(X) and
H _ , 5 (X), respectively, that can be extended continuously
up to (@,,§) \E.
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Proof: The proofis basically parallel to that of Theorem
3.2. First we change the definitions of M, A4, B, and C by
replacing p and p® by ¥ and ¥, respectively. Next we study
their properties using Lemma 6.3 in those places where pre-
viously we used Lemma 3.7. In this way we are able to prove
that the analogs of the expressions which in previous chap-
ters could be continued analytically on an appropriate Rie-
mannian manifold are now norm continuous up to
[0,,61\Q. For instance, B(z) is norm continuous up to
[@,,£]1\Q as an operator from H _, ; (X) into L 2(X).

Instead of the analytic Fredholm theorem we have to
use its modification from Ref. 31, Chap. XI.6. By virtue of
this theorem (1 —M(z))™' is norm continuous up to
(@,L,E)\E as an operator from L?(X) to L?2(X), where
EC (w,,£) is some closed set of measure zero.

The last thing to do is to split

R=4(1-M)"'B+C

into Z and R, P, Z), ’s. By using Lemma 4.2 we have

Zp, = Y

D,DEy_

The above theorem is an important step in proving
asymptotic completeness of wave operators; as is well known
their existence can be shown much more easily and in greater
generality.

Theorem 6.5: Let €> 0. Suppose that V, = UPU P,
where U(1 —A)~ Y2 are bounded for k=12 and
UPeHy,),.. for d=1, UPeH,, for d=2 and
U ®eL < for d> 2. Then all the channel wave operators
W * exist and their ranges are orthogonal.

Proof: The proof is essentially contained in Ref. 31. (See
the proofs of Theorems XI.6, XI.16, X1.26, XI.34, and
XII1.27 of Ref. 31.) Q.E.D.

Next we will state the main results of this section. We do
not give their proofs since very similar ones are contained in
the literature and belong to the standard technique of the
stationary scattering theory (see Ref. 6, 28, or 29). Our ap-
proach is closest to that of Sec. III of Ref. 6. The property of
the full resolvent, which was proved in our Theorem 6.4, is a
minor modification of the multiparticle limiting absorption
principle of Ref. 6. Our Theorems 6.6 and 6.7 are close ana-
logs of Proposition IT1.6 and Theorem III.1 of Ref. 6, respec-
tively. They can be proved using Theorem 6.4 by mimicking
methods of Ref. 6.

Theorem 6.6: Suppose that ¥V satisfies Assumption 6.1,
¢, is a two-cluster channel, Ae(w,&)\E, and ¢eH, 5. Then
(W E*) can be restricted to the sphere of radius v, (1)
and

Tp(a) (Ve WNW E*Y

= w-l(i){n Ty Ve ANTEZ) oy (A + i)Y

Remark: Suppose that feL >(S“~'). Then (at least for-
mally)
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aD:,ENflPDz(VDZ)_l | VENfl | 1/2(1 —M)_IB +CD2PD2 ¢

C=> cpRp,
D
where the ¢, are some numerical coefficients. We define

c= ¥

Dy, k>2

¢p, Rp, + 3 ¢p (1 =P, )R, .
DZ

A similar but more complicated analysis using the tech-
niques from Sec. IV leads to the following formula:

A=4+ Z aDz,ENf,RDZPDZ(’VDZ)_w Ve, ',

D,DEy_,

where 4 is norm continuous up to (w,,£) \{} as an operator
from L *(X) to H,,(X) and the a,, o s are some row
vectors with numerical entries. Eventually, we define

Z=A(1-M)"'B+C

and

Q.ED.

l
HW F oy (Vo A = W EH oy (Ve ()Y

=AW ETpay Ve (D))

Thus the above theorem implies that for Ae(w,§) \E the
following limit exists in Hy _4:

W-lim Z o, (A + i€)*] 7 piay (Vi (A))*f
€-0"

and this limit can be interpreted as a generalized eigenfunc-
tion of H with an eigenvalue 4.
Theorem 6.7: Suppose that Assumption 6.1 holds. Then

Ep(0,6) =S WEE, (0,5 WE*.

Remark: We say that the asymptotic completeness
holds in the energy range [a,b] if and only if

E, (a,b) =@ Ran W E, (a,b) .

It is easy to see that the above theorem and the orthogonality
of ranges of the W F’s imply the asymptotic completeness
below ¢&.

The following theorem may be regarded as an analog of
Theorem 3.3 in the case when the potentials fall off like
r~ !¢ Itis an easy consequence of Theorem 6.4.

Theorem 6.8: Let ¢, and ¢, be two-cluster channels.
Define the T'matrix for the @ — [ scattering by the following

formula (see Ref. 10):
7‘aB(/{)
= (¢a T Doy (Va (/1))( V— VD(a) )ﬁD(B) (VB (/1))*¢/3)
+ W-l(i)]}l(¢a »T D(a) (Va (j’))( V— VD(II) )
X R (/1 +ie)( V— VD(B) )ﬂD(g) (Vﬂ (ﬂ“))*(ﬁﬁ) .
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Suppose also that Assumption 6.1 holds. Then for
Ae(w,E)\E, A T,5(A) is a continuous function with
values in bounded operators from L 2(S ¢~ ',dé) into itself.

Remark: The above result is formulated in terms of the
T matrix T_4(4) and not, as in the previous sections, in
terms of the scattering amplitudes 7,5 (k,,k,). This is be-
cause the » '~ < decay of the potentials is not enough to
guarantee the existence of the scattering amplitudes. Below
we give an equation that shows the relationship between
T,5(A) and 1,5 (ky,k;).

Suppose that f}, f,eL >(S¢~'). Then we have

(f1:Tap (A)12)
= (v, (A)vg ()¢~

X fdé, dézj_"(él)f(éz)ta,;(va (e, vg(1)8,) .
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A new class of lattice identities
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Some identities involving two-dimensional lattice sums of a class of integrals are derived. A

" simple application to theta functions is given.

I. INTRODUCTION

In this paper we derive a new class of mathematical
identities. These identities may be of interest in physical ap-
plications involving wave packets with lattice structures in
coordinate and wave number space; that is, involving func-
tions like

(1.1)

Here, f(x) is a sufficiently smooth and bounded function
and n and m are integers.

Functions like u,, ,, were first introduced into quantum
theory by von Neumann' in his famous paper on the Ergodic
Theorem. In that work the functions were taken to be Gaus-
sians (coherent states). The completeness properties of the
coherent states were studied by Perelomov,” who derived a
special case of the identities discussed here. Functions other
than Gaussians were discussed by Bacry ez al.> A very com-
plete list of references is given by Janssen.*

The identities we consider involve the inner products of
two such functions,

U, m (x) =f(x — n)exp{2mimx}.

+ o
hinm) = J dx f*(x)g(x-n)exp{2mimx}, (1.2)

and state that the sum

nm= + o

Stkgy= Y

for at least one pair of values k = k,, g = g, between zero and
27. In particular, if f and/or g is an even function of x,
ko =g, =m;if f and/or g is odd then ky = ¢, =0.

We prove the result by noting that

h(n,m)expli(kn —gn)} =0 (1.3)

S(k,g) =Y expli(kn —gm)}

Xjf*(x)g(x — n)exp2mimx}dx  (1.4)

and that the sum over m can be done using the Poisson inver-
sion formula to yield

Stkg) =3 exp{ikn} def*(x)g(x —n)
§(x -2 ) 1.5
><§;: (x Py +p \ (1.5)

= ; « 9 49 _,_ )
5 cxpliknt (L= o) —p
(1.6)
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=[gewtro s o)

X|Y explikn'} (_q_ - n')] .
[nZ P & 27
It has been shown that the expression
v(k,q) =y explikp} f (L —p)

7 27

has at least one zero for k and g between zero and 27. Note
that for even f, k = g = 7 yields v = 0, whereas for odd f
the zero occurs for k = g = 0. It follows that the sum S(k,q)
is zero at k =g =7 for f and/or g even, and is zero at
k=g =0 for fand/or g odd. The resulting identities are
obvious for the case of one of the functions odd and one of
them even. For both odd or both even, however, the resulting
identities are not obvious. For functions that are neither even
nor odd, there still must be at least one zero in the range O to
277. This result was first obtained by Balian,” and indepen-
dently by Morgan.® The work of Balian is.concerned with
the dispersion properties in x and k (the variable conjugate
tox) of an orthonormal set of functions of the type (1.1). He
showed that the product of the uncertainties in x and k for
any member of the set diverges at least logarithmically. A
similar result was obtained by the author.”

(1.7

Il. AN EXAMPLE
We consider the functions
f(x) =exp — {a*x*/2 + t *x}

and (2.1)
g(x) = exp{ — bx?/2 + sx},

where a = a, + ia,, b=b; + b, with a;, b, >0 and s and ¢
arbitrary complex numbers. Here /4 (n,m) is easily calculat-
ed:

172 _a .
h(nm) = (_2”_) exp[ (na — 2mim) (nb + 2mim)

2(a + b)

. (s+ 8?2  t(na—2mim)
i 2(a+b) (a+b)
_s(nb+2m’m)] . 2.2)

(a+b)

It is convenient to replace s by s(a+8"? and ¢ by
t(a + b)'"? and to define

z,(n,m) = (an — 2mim)(a + b) ~'/?
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and
z,(n,m) = (bn + 2mim) (a + b)~'/2

This has the advantage that in the special case considered by
Perelomov,” where z, and z, are complex conjugates, the
sum over n and m in (1.3) becomes a sum over lattice points
in the complex z plane, with a unit cell having the area 7. The
general expression for # (with normalizing factors left out)
is

h(nm)a exp{ — L z,z, + immn + st + tz) — sz,}.  (2.3)

The functions that enter into the identities (1.3) are then
obtained by taking the even and odd parts of (2.3) with
respect to s and £.

Before indicating how that is done, we note that setting
t = 0in (2.3) projects an even function of ¢, so that both the
even and odd parts in s of (2.3) will satisfy the identity (1.3)
with g, = k, = 7. If we further make z, and z, complex con-
jugates, we recover the sum rule noted by Perelomov.?

Returning to the general case, our identities read

Z (—=D"T"P ()P (HH)h(mn) =0 (2.4)

and

ZP_ (HP_()h(n,m) =0, (2.5)
where the P’s project even and odd parts with respect tosand
z.

In the special case of @ and b real and equal, the z lattice
consists of rectangles, and the sum (2.4) and (2.5) can be
expressed as relations between theta functions®
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+
O;(ug) = Y q" exp{2inu} (2.6)

and

+ o
Oaug) = Y ¢"(— 1)" exp{2inu}. 2.7)
Setting ¢, = exp{ —a/4}, wu, =1i/2(a/2)V*(t —s),
g, = exp{ — 7°/a}, and u, = 1(2/a)'*m (s + t) we find

0 = exp 15{0,(q,,u,)05(go,u,) + 05(q,,4,)0,(q2u,)
1+ 0,(q1,u,)04(qn15) F 05(q,,1,)65(gr,u2) }
+ exXp — 1519, —q1:g>— Gyt — (ia/27) iyt

- (2m/ia)u, }. (2.8)
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In a recent paper, Briill and Lange [ Expos. Math. 4, 279 (1986); Math. Meth. Appl. Sci. 8,
559 (1986) ] have discussed a class of nonlinear Schrédinger equations with rather general
nonlinearities which comprises various cases occurring in the literature. Although the
“potentials” in these equations are quite complicated, the equations admit various invariance
properties. The present paper has two aims. First several local and global conservation laws
related to conservation of mass, impulse, and energy are exhibited. One of these laws seems to
be new, though not surprising. Then it is shown that the equation defined by Briill and Lange
is just suitable to apply some transformations which reduce the problem of solitary waves to a
relatively simple Hamiltonian system in the plane. This method of transforming the phase
plane problem into normal form is, in some respects, similar to the transformations introduced
by Hadeler [Proc. Math. Soc. Edinburgh, to be published; Free Boundary Problems: Theory

and Applications, Montecatini Conference, 1981, edited by A.Fasano and M. Primicerio
(Pitman, New York, 1983), Vol. I1, pp. 664-671] for parabolic and hyperbolic reaction

diffusion equations.

i. CONSERVATION LAWS
The equation studied in Ref. 1 has the form

w, = —u, + Wu, (1)
where the “potential” W is given by

W=f(s) +2k-h’'(s) [h(s)].. (2)
and

s=uu=|ul* (3)

Here fand 4 are real smooth functions (three times continu-
ously differentiable, say) on [0, » ), and & is a real constant.
The solution u is a scalar complex-valued function.

The “potential” W can be expressed in various ways,

e.g.,

W=f(s) +2kh'(s)[h"($)s + h'(8)s.. ] (4)
If one introduces

v=1s, (5)
and

Jw) =fGs), (6)

h(v) = h(s), (7
then
W =) +k[h'(0)/0][h" )2 + k' (W, ]. (8)

For a solution u the following expressions are of some inter-
est:

€= |ul*=s, (9)

e, =Imut, = (1/2i)(uu, —uu,), (10)

e, =u i, +g(s) —k [(h(),.]% (11)
where )

g(s) =J;f(7')d7'. (12)
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The quantities eg,e,,e, are called the localized mass, impulse,
and energy, respectively. We shall also consider

e;=Reui,. (13)

We show the following conservation laws.
Proposition 1: Define

A=uu—uu, = — e, (14)
G, =iA, G,= (i/2)A,, (15)
G, = |lu.|>*— Reuii,, +f(s)s —g(s)
+ 2k{h " ()s[A($) ] — H[A() 1D, (16)
G, = Hu @i, — u i +f()A+ 2k [(h'(5)h " (5)5]
+ B (s)s)A — R (s)s, A ]} (17)
Then
de; IG; .
= , i=0,1,2,3. (18)
at ax

The next proposition is an immediate consequence.
Proposition 2: Assume u is a solution of Eq. (1) converg-
ing so fast to zero for |x| - 0, that the integrals

+ o
E.(?) =f e, (tx)dx, i=0,1,23, (19)

exist and that integration can be exchanged with differenti-
ation with respect to t. Then

iE,.(z) =0, i=0,1,2,3. (20)
dt

Also
E,(2)=0. (21)
Proof of Proposition 1.
%eozs, =IiA,, (22)
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g;el =g;(1m ui, ) =——;TI%A
=4[ u, + i, u, — (Ui, +aug )]+ W,.s.
(23)
On the other hand, from (2)
W, =f'(s)s, +2k(h'(s)h"(5)2 + h'2(5)Sx)xs (24)
hence
2 6= () — Wi+ Tt )+ (OS5,
+ 2k [h"*(s)ss + h'(s)h " (s)ss]
+ 4R ()R " (5)55, S0y + B ()55 0x |
G
= —871 (25)
by direct calculation. From (14),
A, =u, u—u,u (26)
A, =u, u—uid, +u, U, —ud,. 27)
From (22),
S, =IA,,. (28)
Furthermore,

utxﬁx +atxux =l'(uxxxl_lx - ﬁxxxux) +in(uxl—l - uﬁx)

=1l — Ul ), +IW A (29)
Hence
- i%ez = (Ul — Ul ) + WA+ f9)A,
—2kh'(8)s (h"(s)s, A, +h'(5)A,,)
= (U, —u, i, ), +f(A, +f'(s)s A
+2k(h ()R " (s)s: + h'2(s)s,,), A
—2kh'(s)s (A" (s)s, A, +h'(s)A,)
= (Ul —u U ) + (f(8)A),
+ 2k [('()h " (5)s: + B2 (5)s.)A]
—2k(h"(s)s . A,),. (30)
Il. SOLITARY WAVES
A solitary wave is a solution
u(tx) =v(x —ct)e®>—9, (31

where v is a real function and ¢,d,@ are real constants. Hence
the solution consists of the absolute value which moves like a
wave with speed ¢, and a rotational factor (or phase factor)
moving with speed d, not necessarily equal to c.

In Ref. 1it has been shown that for a solution of the form
u(tx) =v(x — ct)explid(x — dt)], where ¢ is a real func-
tion, ¢ is necessarily linear, in fact #(¥) = cy/2 (see below).

This solution (31) satisfies

u, = —cve  —ipdve”, u,="v'e" + vipge™,

[ . - 2, (32)
u,, =v'e” + 2ipv'eT —vpe.
We introduce these quantities into the differential equations
(1) and (8) and compare real and imaginary parts. Then

p=c/2 (33)
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and
0= —v" + (c2/4)v — (c/2)dv + f(v)v

+ k(R R " () + (') "). (34)
Define the constant
k= (c/2)d — c*/4. (35)

Then the equation reads

[1—k(h' P = —kv+f0)v+kh'(w)h" @W?
(36)

Let
E=v, =0 (37)

Aslong as the leading coefficient does not vanish, Eq. (36) is
equivalent with the planar system

§'=mn, ) o (38)
o = —KEH SO+ kn (D" ()’
1—k(h' (&)
Introduce the function
H(E =1-kth' (&) (39)
Then
H'(&) = —2kh" (&)h" (&) (40)
and the system reads
§'=m, (41)
=1 —kE+JEE—VH (ETVHE).
After the transformation
E=¢& C=H" (&, (42)
the system (41) assumes the form
&' =H(&), (43)
§'=H [ — k€ + (DL,
Now introduce a new time variable by
r=fo H=E(p))dp. (44)

This transformation (as long as it exists) does not change
the trajectories of the system

E=¢ (= —kE+OE (45)
Hence the existence problem for solitary waves is to some
extent (as long as H stays positive) independent of the func-
tion A.

Equations (45) represent a Hamiltonian system with
the Hamiltonian function

HEL) =187 — (k/2)EX+18(EP).

Hence the system (41) is also a Hamiltonian system with the
Hamiltonian function

FEm) =L HE — W/DE*+1g(ED.  (4T)
One can assume that the function H does not vanish, other-
wise the differential equation (36) for v is singular. In order
to have a definite notion at hand, we call a solitary wave
regular if k (lAz "(v))* < 1. Then we can express the result as
follows.

Proposition 3: There is a one-to-one correspondence of

(46)
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the regular solitary waves of Eq. (1) and the solutions of the
Hamiltonian system (45). Solitary waves vanishing at infin-
ity correspond to homoclinic orbits connecting (0,0) to it-
self.

According to Ref. 1 several types of functions occur,
f(s) =As® or

f(s) =Alogs, h(s)=s?, h(s)=(1—s)"2

As an example we give a complete discussion of the case
[the “classical case” f(s) = As®, h(s)=0hasbeen treated in
Ref. 2],

fls) =45, p>0, AeR, h(s)=s% g>1. (48)
Then the system (45) reads
E=§, L= —kE+AE¥TL (49)

Always (0,0) is a stationary point. There is a second station-
ary point (£,0) iff kA > 0. Then

E—z (K/A)I/ZP.

The determinants of the Jacobians at (0,0) and (E’,O) are
and — 2pk, respectively. If 4 >0 and x <0 then (0,0) is a
saddle point and all nonconstant solutions are unbounded.

If A >0and x> 0 then (0,0) is a center, ( E ,0) is a saddle
point. Then there are periodic orbits around (0,0). These
correspond to solitary waves in the form of spatially periodic
wave trains.

If A <0 and « > 0 then all nonconstant solutions are un-
bounded. On the other hand, if 1 <0, x <0 then the system
has a saddle point at (0,0), a center at ( E ,0), and a homo-
clinic orbit connecting (0,0) to itself. Along this orbit the
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Hamiltonian is constant and has the same value as at (0,0),
hence 7 =0 along this orbit.

After the situation for A=0 has been clarified one has to
determine the maximal amplitude §A’ of the homoclinic orbit.
From #°(£,6) =0, £ =0 one finds

E=((/A)(p + 1))V

If we choose h(s)=s% g>1, then il(v) =0, and
H(v) = 1 — k-4¢*-v*7 2 Hence the homoclinic orbit of the
system (45) corresponds to a homoclinic orbit of the origi-
nal system (38) if either k<O or k>0, but k-4¢>-£%—2 <1,
ie.,

k-4g*((k/A) (p + 1))~ D77 1,

For this example we can collect the result as follows. Assume
JSand h are given by (48), wherep>0, g>1, and 4 <0,

_ { + oo if k<O, (50)
(|4 1/ + 1))(4g%k) =79~V if k>0.
Then for each pair (¢,d) with
(¢/2)d — ¢*/4<( — 0,0), (51)

there is a solitary wave with parameters ¢ and d which van-
ishes at infinity.

'L. Briill and H. Lange, “Solitary waves for quasilinear Schrédinger equa-
tions,” Expo. Math. 4, 279 (1986).

2W. A. Strauss, “The nonlinear Schradinger equation,” in Contempory De-
velopments in Continuum Mechanics and Partial Differential Equations,
edited by G. M. de La Penha and L. A. Medeiros (North-Holland, Am-
sterdam, 1978).
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The Hamiltonian structures of the nonlinear Schrédinger equation in the

classical limit
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(Received 22 July 1986; accepted for publication 5 November 1986)

Using Madelung’s hydrodynamical variables, it is shown that the bi-Hamiltonian structure of
the nonlinear Schrédinger equation goes over to a bi-Hamiltonian structure of the shallow

water wave equations in the classical limit.

I. INTRODUCTION

In 1971 Gardner! showed that the Korteweg—de Vries
equation can be viewed as a completely integrable Hamilto-
nian system, and in 1978 Magri” published a theory of inte-
grable Hamiltonian systems of partial differential equations.
The main feature of Magri’s theory is the concept of a bi-
Hamiltonian structure, that is, the ability to put a system
into Hamiltonian form in two different ways

u, =J,EH, = J,EH, ,

where the H ’s are the Hamiltonian functions (functions of u
and its x derivatives), the J’s are Hamiltonian operators
(skew-adjoint partial differential operators giving rise to a
Poisson bracket satisfying the Jacobi identity), and E is the
Euler operator (variational derivative). A recursion opera-
tor’ R = J,J [ ! can be constructed from the Hamiltonian
operators and can be used to get an infinite sequence of sym-
metries and conserved densities of the system. Such se-
quences are a hallmark of integrable partial differential
equations (PDE’s), and Magri showed why. Later Ku-
pershmidt and Wilson* used the idea of a second Hamilto-
nian structure to study modified Lax equations and Ku-
pershmidt® even found a tri-Hamiltonian system of
dispersive water-wave equations containing the usual
Korteweg—de Vries equation as a special subsystem. Most
recently Nutku® has shown that the equations of finite am-
plitude waves also contain a tri-Hamiltonian structure. The
equations of isentropic gas dynamics and the shallow water
wave equations are examples of these.

One of Magri’s original examples was the nonlinear
Schrodinger equation (NLSE). It has two Hamiltonian
structures. If the NLSE is written with # (Planck’s constant
divided by 27) in the appropriate places, it describes a non-
linear quantum mechanical situation. In 1927, in an effort to
give Schrddinger’s equation a hydrodynamical interpreta-
tion, Madelung’ used a change of variables to write Schro-
dinger’s equation in fluid form. Purcell® used Madelung’s
transformation to study the higher-order symmetries of the
resulting quantum fluid equations for both the linear and
nonlinear Schrodinger equations, and has indicated applica-
tions to liquid helium. Writing the NLSE in fluid form re-
sults in the shallow water wave equations (SWWE) with
another term containing #°. Hence in the classical limit
#—0, we have NLSE—SWWE. The point of this paper is
that the two Hamiltonian structures of the NLSE —two of
the Hamiltonian structures of the SWWE. Furthermore, the
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recursion operator for the NLSE must pass over to one for
the SWWE, so there is a correspondence between their sym-
metries and their conserved densities.

Il. PRELIMINARY CALCULATIONS WITH THE NLSE
The NLSE with # is
¥, =it + (1/28)¢7Y).

Madelung’s change of variables is accomplished in two
stages. First let

¢ — R eiG /f
where R and 6 are functions of x and ¢. Substituting this into

the NLSE results in two equations, the real and imaginary
parts, respectively,

R, +2R.0, + RO, =0,

6, +62+R?*2—#R /R=0.
Letting p = R ? and u = 260, results in

p, +pu, +up, =0,

u, +uu, +p, —2# (R, /R), =0,

which are the SWWE except for the #° term, which vanishes
when #— 0 in the classical limit.

The theory of Hamiltonian PDE’s (see Ref. 9) concerns
systems of real equations, so to avoid confusion it is desirable
to write the NLSE as a system of two real equations by set-
ting ¢ = v + iw. Then we get

v 0 4)((%) 1, (v))
= ﬁ —_— 2 ,
(w); (1 0 W, * 24 W+ w) w
which can be put in explicit Hamiltonian form
(-0 )
w/e  \1 0/\E,
X[ _f (v +wk) +L(u2+w2)2]
207 T 8k ’
where E, and E,, are the variational derivatives with respect
to v and w, respectively, and the Hamiltonian function is the

usual energy density. The second Hamiltonian structure is
given by

(9).= (2 + 20 (2 D)

X[—;— (wv,, -vwx)] .
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Here D, is the total x derivative and D [ ! is its formal in-
verse. The Hamiltonian function is the usual momentum
density. Both of these are obtained from Magri’s original
example in Ref. 2 simply by changing from # to v and w and
inserting the #’s.

The Madelung change of variable from v and w to p and
u is expressed by

p=v+uw?
u=2h(vw, —wv,)/(V* + w?) .

Using the fact that the variational derivative or Euler opera-
tor of a total x derivative is zero, it can be shown that the first
Hamiltonian function, the energy, becomes

#i 1
- ("), — —pt* + ——p?,

8% 84
which is
1 (1 2 1 5 2, 1 )
———pu* — —p* + 2%k /2 ;
4% 2p 2'0 P

The factor — 1/4# in front will cancel out later. In the clas-
sical limit #— 0 only a classical energy
bou’ —4p°
would remain. The second Hamiltonian function is obvious-
ly
— (1/4%)pu ,

which is a classical momentum with the same factor — 1/4#
in front.

lll. CHANGE OF VARIABLES FOR THE HAMILTONIAN
OPERATORS '

If a Hamiltonian system
U =JE,H
is rewritten in terms of new variables ¥V, then we get
V,=V,J(V,)*E H,
where V', is the differential of " with respect to U defined by
d
J Vyndx = o

€
and the star denotes the formal adjoint. The new Hamilto-
nian operator is

Ve (Vy)*.
The simple proof of this involves the chain rule and the defi-
nition of the Euler operator

J V(U + en)dx,
e=0

fE,,[L(If)]nczbc=;!‘i

€ le=0

JL(V+617)dx.

In our case we want to pass from vw to pu variables.
Hence J will go to

<u pw>J( v pw) .
uU uw uU uw

Using chain rules u, = u,0, and u,, = u,0, it is easy to
check that

( v pw)=2
uU uw
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Note that an operator D, f means “multiply by f and then
take the x derivative.” The first Hamiltonian operator is thus

4( 0 ﬁDx)
- ﬁ‘Dx 0 ’
which is the usual Hamiltonian operator for the SWWE or

the gas dynamics equations. '
Noting that

(—towrr )50 ")
—#iD w/p #HD.v/p) # \O )

0 O\(v fi(w/p)D,
—w v)(w —ﬁ(v/p)Dx)
reduces simply to

0 O

6 w.)

it is easy to see that the second Hamiltonian operator

w )ﬁD (U —ﬁwa/p>
#D.v/p) PP+,

D, v/p
is a third-order operator with no terms of order smaller than
first order. In the limit #—0, only the first-order terms
would be kept.

XD ‘(

( v
— D w/p

IV. SUMMARY

The first Hamiltonian structure for the fluid version of
the NLSE is

0 DN\(EN[1 1
(Z)t= _<D O)(Ep)[7pu2—?p2+2ﬁ2(p1/2)x

and the second is

E
Py _ »
(u); = (# C+ﬁB+A)(Eu)[pu] )

where A, B, and C are first, second, and third order in D,,
respectively. Note how the extra # that D, carries around
canceled with the extra 1/7 of the Hamiltonians. In the clas-
sical limit any term with an # disappears and two Hamilto-
nian structures for the classical SWWE remain. Since the
second Hamiltonian operator for the NLSE is Hamiltonian
for any value of the parameter %, the operator ##C + #B + A4
(which comes from a change in variables) must also be
Hamiltonian for any value of #. Thus each of 4, B, and C
must be Hamiltonian operators, hence there is no worry that
the limiting operator 4 as #i—0 will be Hamiltonian. Obvi-
ously a correspondence of higher-order symmetries (and
their Noether generators, the conservation laws) is in effect
because there is a correspondence of Magri-type recursion

1 /0 —w)
— D
(ﬁDx+ﬁ(0 1% ‘
0 D!
2 X
(fiC+fiB—{—A)(Dx_1 0 ),
D' o)
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Note that the recursion operator for the NLSE raises the
differential order upon each application, whereas 4 being
first order in D leads to a recursion operator for the SWWE
that will maintain the same differential order but will change
the degrees of # and p, depending on what explicit functions
arein A. See Ref. 6 for a more detailed account of the Hamil-
tonian structures, recursion operators, and conserved densi-
ties of the SWWE.
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The semiclassical time-dependent propagator is studied in terms of the SU(2) coherent states
for spin systems. The first- and second-order terms are obtained by means of a detailed
calculation. While the first-order term was established in the earlier days of coherent states the
second-order one is a subject of contradiction. The present approach is developed through a
polygonal expansion of the discontinuous paths that enter the path integral. The results here
presented are in agreement with only one of the previous approaches, i.e., the one developed on
Glauber’s coherent states by means of a direct WKB approximation. It is shown that the
present approach gives the exact result in a simple case where it is also possible to observe

differences with previous works.

I. INTRODUCTION

The formulation of semiclassical approaches to quan-
tum problems has received a renewed interest following the
popularity of the so-called coherent states (CS’s),"? which
are in some sense the most classical states. Since the pioneer-
ing work by Klauder,? where the path integral formulation
was established, it was apparent that a so-called complexifi-
cation of the (real) classical variables (essentially position
and impulse) was necessary.> This complexification ob-
scured the derivation of the semiclassical time propagator
(SP) especially when the second-order term, i.e., the re-
duced propagator (RP), ought to be considered. Attempts
to avoid this procedure*” have resulted in a heuristic formu-
lation of the SP in a P-form® ( P- and Q-forms associated with
CS’s were introduced from the beginning by Glauber”). Lat-
er work on Glauber’s coherent states has shown® that the RP
in the P-form has a more complicated structure than the one
first assumed.

The reduced propagator has also been a subject of con-
troversy in the path integral approach. The imposition of
continuity conditions®~'' to the paths considered has forced
the application of the path expansion procedure'? for the
evaluation of the RP, and as a result of this procedure, the
second-order term has been formally expressed in terms of
the eigenvalues of a Sturm-Liouville problem.>'® This pro-
cedure has received some criticism'> because it produces in-
correct behavior of the SP at the starting time, among other
problems."® Other attempts to find the semiclassical propa-
gator present problems in the identification of the correct
classical Hamiltonian. '%

In the present work, we study the semiclassical propaga-
tor for spin and quasispin systems using the following steps.

(1) We decompose the propagator by means of the Trot-
ter product formulas and slip-in identities between the prod-
uct terms as done in Refs. 3-6, 9-11, and 16, but, taking
advantage of the coherent states’ overcompleteness,'*” the
identities are taken in a more general form than in the pre-
vious works. This generality is not really a necessary tool,
but it makes the following steps clearer.

® Fellow of the Consejo Nacional de Investigaciones Cientificas y Tecnicas,
Argentina.
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(i1) Weevaluate all the integrals by the Laplace method.
This method requires the complexification of the variables,
but, by virtue of the generality introduced in (i), this reduces
to fixing the free complex parameter (which labels the equiv-
alent identities) to a different value for each time.

(iii) The second-order term is evaluated directly from
the Laplace method working out a second-order differential
equation for the reduced propagator.

(iv) Finally, the equation for the reduced propagator is
integrated.

The steps (i) and (ii) are developed in Sec. IT; Sec. III is
reserved for a detailed calculation of the reduced propagator
[steps (iii) and (iv)] while Sec. IV is devoted to an almost
trivial example which already shows the differences between
this work and the previous ones. The conclusions and per-
spectives are presented in Sec. V.

Il. SU(2) PATH-INTEGRAL-LIKE FORMULATION
A. The formulation

The path integral formulation can be easily found using
the slip-in identities decomposed as addition of coherent
states®>>~!! between the terms in the Trotter product for-
mulas

U=exp( —iHt) = lim (1 —iHt/N)". Q.1
No oo

The standard identity in terms of CS’s is written'? as

27+ 1 dzN\dz
I= 2 Jc l2) | (14 zz*)%’ (2.2)
where
|z2) =exp(z'J, —2'*J_)|J, =T, (2.3a)
Z=e"%0/2, z=e *tan(8/2), (2.3v)

(J.J_,J,) are the three generators of the SU(2) group, and
|J, — J )istheextremalstate (J,|J, —J ) = —J|J, —J))of
the J-irreducible representation of SU(2), while the domain
of integration C is the complex plane.

The coherent state (2.3) may also be written taking ad-
vantage of the BCH theorems! in the form
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|2) = exp(zJ, exp(in(1 + zz*)J,)exp( — z*J_)|J, — J ),

(2.4a)
lz) = exp(z2J ) |J, =T Y (1 + zz*) =7, (2.4b)
|z) = |z) (1 4 zz*) =7 (2.4¢c)

This last formula [ (2.4¢) ] defines the unnormalized coher-
ent state (curved brackets) which allows us to rewrite the
identity (2.2) in the form

I— 2J+1

f |2) (2| [(1 + zz*)?(z]z)] " 'dz Adz*. (2.5)
C

As the CS’s form an overcomplete set of states there are
many different ways of writing the identity; for instance,
multiplying (2.5) by

I=exp(&J Jexp(—68J,),
we obtain
I=1II=exp(dJ_ )exp( —8J )
=exp(8J, ) exp( —b6J ),
27+1
2mi
X [(z|2) (1 4+ zz*)?] ' dz A dz*,

which may be put in the form (applying again the disentan-
gling theorems*)

2J +
27ri

I= f exp(8J ) |z) (z|exp( — 8J,)
C

I=

J ) (e[ (x|p) (1 + px*)?]~ ' dy Adx*,
D
(2.6a)

where x* and y depend on z and z* in the following specific
form:

y=2z+29, (2.6b)

x* =z*/(1 — z*§). (2.6¢)
The domain of integration C in (2.5) transforms into

D = {(y,x*) such that

(y—8*=x*/(1+x*»} in (2.6).

The identity (2.6) is valid for any arbitrary complex number
&, just because it does not depend on it.

Following the standard procedure*>*'%1° we obtain the

following expression for the matrix elements of the propaga-
tor between CS’s:

N
@Ul = tim [ [ ] ay, naxs
N- D, Dy n=0

XL + D) [2mi(1 + y,x%)%] ™ "Yexp(F),

+ln[(¢|yN)(x0’¢)/(xolyO)] (2.8)
and where the classical Hamiltonian J(y, _ ,,x¥) reads
%(yn~l’x:)z(xn|H|yn_l)/(xn|yn)l)' (29)

At this point we note that there is no reason for requir-
ing continuity of the paths just because we are dealing with
nonorthogonal states. In this respect we recall that in earlier
works on the subject>>'! only almost-everywhere contin-
uous paths were considered. The contribution of the discon-
tinuous paths can be determined by the following argument:
considering the evaluation of the matrix elements of the
identity (2.6),

o =ZEL [

27

(ly) (x|¥)
(x|p) (1 + x*p)?
we observe that as long as the integrand is a nonsingular c-
number all the allowed values of (y,x*) contribute to the
integral and not only just y = t, x* = ¢* (it is even not nec-
essarily in the domain of integration for an arbitrary 8!).
Further, the integrand can never become singular, as is easi-
ly seen by inspection of (2.2).

The evolution operator has been decomposed, in our
case, in an infinite product of infinitesimal steps (21). Each
of the terms in the product is very like the identity but be-
cause of the argument concerning the matrix elements of the
identity [cf. (2.10)] no notion of continuity of the paths
follows from this observation. In fact the opposite is true. On
the other hand, if the identities inserted between the terms of
(2.1) were expressed in terms of §-orthogonal states, an in-
tuitive notion of continuity of the paths would follow.

In the following, we shall include discontinuous paths

(as suggested in Ref. 13), with the understanding that the
state |p,) in (2.7) is not supposed to be |y,) = |y,_,
+ O(1/N)). At this time we will not formulate a formal
path integral which would call for the time derivatives of
discontinuous paths. A discussion of the subject may be
found in Ref. 16. In the semiclassical evaluation of (2.7) we
follow a method which closely resembles the polygonal for-
mulation of the path integral.'*> We left the large N limit as
the last step to be taken.

dy Ndx*, (2.10)

B. Classical evaluation of the integrals

The evaluation of integrals, which depends on complex
arguments (but real variables) by the Laplace or saddle
point methods, requires that the integration path be ex-
tended to the complex plane'’; this procedure was called

2.7 complexification by Klauder.? In the present situation such
where F has the form a deformation of the integration path has already been done
~ (x, Iy ) i in (2.6) and the extremal points are identified by maximiz-
F— Z In [_"";l_] ——F (Y, _ XY ing F[(2.8)] in all the variables, leading to the following set
W= (x,[¥.) N {  of equations:
OF Hn[ (x, |y, 1)/ (x,[p,)] — it /INF(y,_,.x*)}
L O RVAC 1) It T 21N, (2.112)
Ix* ox*
OF 3 In{(x,|¥)/(xoly)} .
=0= g 0207, e, =y, 2.11b
oxt oz Y=y, ( )
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ﬂ?— _ a{ln[(xn+1|yn )/(xn |yn)] "it/N%(yrnx::Jrl)}

=0 , n=0,.N—1, (2.11c)
W ay,
dln /(x .
N N
|
3 % 1 2
These equations fixboth y, and x* in (2.7) [orz, and §,,, see B — 9F (2.15b)
(2.6)]. Ll
We recall here that the large parameter in which the 3 2F’
asymptotic expansion is carried out is just 2J and that C, = FaEe (2.15¢)
yn xn y,.x*
(x[p) = (1 +yx*)*. N
It is easy to realize that the classical equations (2.11) D, =——— (2.15d)
y,_, 0x; 7.%*

point out the continuous path as the most important one in
the saddle point approximation. They also include the natu-
ral boundary conditions.

In what follows we are going to consider that only isolat-
-ed classical paths contribute to the SP. If there is more than
one path, a sum over classical paths will be understood.

Developing the integrands in (2.7) up to second order
around the classical path (¥,,X*) we obtain the following
expression for the SP:

@|U ) = z\ler expliS(1,6*,t,N))

N 27+ 1
X dg, Ndg *
,.I:Io[ En NG [(2m'>(1+ynx:>2”

Xexp[.5(7S;E) 1, (2.12)

withx* =X* + £*'y =7 +¢,. We here define the clas-
sical (discrete) action, S(¢,¢*,t,N), in terms of the classical
path expressed by (2.11), as follows:
N X,V 1)
S(¢’¢*’t,N) = ( —_ l)ln l:‘-—__——
2 (X, [P)

n=0

— H G, %) _th — Iy Fy).
(2.13)

The secondary action appearing throughout the tridiagonal
matrix S, and the vector § are defined, respectively, by

4, C,
¢, B, D, ,
S, = D, , 4,_, C,_,
4o Co
C, 001/2))
(2.14a)
and
§T=(§0’§3€,§1a FieeiGneE W) (2.14b)

The matrix elements 4,, B,, C,, and D, are the various
second derivatives of F evaluated at the extreme points, i.e.,

4 _9F (2.15a)

n = 2 b4
ayn y.x*
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and the O(1/2J) symbol means order of 1/(2J) as J goes to

©.

lll. EVALUATION OF THE REDUCED PROPAGATOR

The evaluation of the SP represented by (2.12) simply
involves the Gaussian integrations; we obtain

(o|U |¢) = exp(iS(¢),¢*,1)) zilfn {(( — )V det(S,))" 2

N
< [+ran2@+0]}, 6D
n=0
where
S(,d*,t) = lim S(¢,¢*t,N)
N—w
:f [laln(x|y)y_%(y’x*)] ds
o dy
—iIn(g|y(9) (3.2)
and
xXE-Xx*(s), y,—-y(s)

is the (continuous) classical path. [ The dot in (3.2) means
time derivative. |

We are going to follow a number of steps in the evalua-
tion of the second-order term. First we factorize out of S, the
C, elements and a factor — i of each row, defining M, as

iC,
S . M 3.3
, = ic, . XMy (3.3)
iCn—l
and taking into account that
N
det S, = det M, ( — )V H C? (3.4)
n=0
the reduced propagator, K, turns out to be
K= lim (( — )V det(S,) "2
No o
N
XTI [ 4250720 + D)),
n=20
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K= lim (detM,)~'"?

N oo

N
X[ [A+y.x)7*Cr 2T+ D] (3.5)
n=0
An explicit evaluation of C, [( 2.15¢) ] shows that
= lim (det M, ) 1/2 H (14 (2N 73. (3.6)

N+ oo

The term (1 4 1/2J)" has to be taken as unity as long as it is
unity plus the error in the evaluation of the integrals by the
Laplace or saddle point method—this procedure lets us
write the expression

K = lim det(M,) "2

N— o

(3.7)

The matrix M,, is a tridiagonal one and has the following
explicit form:

id,/C, R T M,

My = i iB,/C, iD,_,/C,- ¢+ -M,.
1/ n—1 lAn—l/ n—1

(3.8)

The det(M, ) can be evaluated by recursion, using the sub-
matrices M,, and M ; the relations are

M, =detM,, M =detM,, (3.9a)

M, =id,/C,M, +M, |, My=1, (3.9b)

M, =iB,/CM, ,+(D,_))/(C,C,_ )M _,,
M}y =0. (3.9¢)

In the limit N — oo it is easy to realize from (2.15) and (2.11)
that the different coeflicients behave in the following way:

4 : 2
XMt 0((i>), (3.10a)
C, dy I« N N
B 2
L. L o((i)), (3.10b)
C. 5 N N
D 2
ety P i+0((1—)), (3.10¢)
Cn~1 a.]_) = N N
D ¥ 2
ol 14 & —‘—+0((i)). (3.10d)
C, ox* |, N N

This behavior allows us to transform the recursion formulas
(3.9) into a set of coupled first-order differential equations

*
M= i (3.11a)
s
' . . y
=i D (@ _Gx )M’, (3.11b)
Ix* |5 8)7 x* Jx* y
with the boundary conditions
M(0) =1, (3.11c)
M'(0) = (3.11d)

The final step in the evaluation of the RP is to integrate
Eq. (3.11). It may be checked that the solution we are look-
ing for is the following one:
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Ix*(1) (t) }1/2
- |
( Ix*(0) 30 dFF(0) Izs(ry
1 (T _ o )d} 3.12
XexP[2.fo(5’ﬁp x|, st , (3.12a)
(1)
M'(t) =iM(t . 3.12b)
(1) =M )3)5*(0 5(0) (

These expressions can in turn be put in terms of the second
derivative of the action S [ (3.2) ], taking into account that

[ ISEOINDL) _ oy XN (343,
s 1+ F(0)x*(0)
(ISOOID) _ oy O 543
x%* (1) 1+ p(0)x*(8)
and
%z B L IOE A O (3.13¢c)
the determinant M [(3.12)] then equals
M(1) = (1 +F(0O)F* (01 +F()X* ()
. 9% )-1
X(‘ ax(t)* dy(0)
d Ix
dst . 3.14
Xexp{ f(a_ 8x*) s] (3.14)

The final expression for the matrix elements of the semi-
classical propagator (2.12) reads

($|U |9 = expliS(1hg*0)} [

2S 172
EY, a¢*]
X [(1+ ¢x*(0)(1 + y(6)¢*)/(2))]

t - =%
o[ [(2-2)a]
dy Ox*

where 7 and x* are the classical (complex) coordinate and
impulse, which start at y(0) = ¢ and end at x*(¢) = ¢* fol-
lowing the equation of motion (2.11) in the N — oo limit

(3.15)

2 %|7) - y,X
;G 5 I G (3.16a)
ax*ay Ox*
2 %I7) - V,X
_ 92 o, OHGE) (3.16b)
dx* dy ay

The semiclassical expression (3.15) can be interpreted
as the contribution of several factors: first of all, the classical
contribution, i.e., the exponential of the action S; and sec-
ond, the square root of the term

3S(Pd*.1)
EVETL
_ 1+ ¢%*(0) %(0)

L+y()é* Y g
(3.17)

which accounts for the change in the density of the paths due
both to the Hamiltonian flow and the curvature of the phase

(20) Y1 + ¢x*(O))(1 + F(2)p*) i

_1+¥3@)é* (@)
1 +4x*(0) Jd¢*

space.
We call the last factor
& a;c*) ]
ex — = — d. 3.18
p[ J. (3’ dx* S ¢ )
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the “extra-phase” term because it provides an extra phase
term in the simplest examples, although it is not necessarily
of modulo one in general. We do not have at present a phys-
ical interpretation for this term, but we observe that it is like
a signature of the coherent states, in the sense that the
expression (3.15) looks like the expression of the semiclassi-
cal propagator in term of space coordinates'’ except for the
presence of this term, (3.18), and the ratio of the metric at
the initial and final points in (3.17). An equivalent term to
(3.18) is also present in the P-propagator of Ref. 8.

IV. EXAMPLE

The simplest example we may look for is the J, Hamilto-
nian:

H=1J,.
The classical Hamiltonian (2.9) is now
F(yx*) = (x|J,| »)/(xly) = —J(1 —px*)/(1 + yx*)

(4.1)

4.2)

and the classical motion (3.16) is
p=y, y0)=41¢, (4.3a)
¥ = —x* x*(f) = ¢*. (4.3b)

These equations have straightforward integrals that al-
low the evaluation of the action in the form given by (3.2):

S(hé*,1) =Jt —i2J In(1 + Yd*e 7). (4.4)

Taking the second derivative of S (4.4) we obtain

s i2Je "

3 og* (1+¢g*e )2

The evaluation of the SP (3.15) from (4.3)—(4.5) gives

(U |¢) =€ (1 + yp*e—")>. (4.6)
This last formula [ (4.6) ] is in fact exact for the matrix ele-
ments of the SP. The result (4.6) in this example is more
accurate than the previous results where the same matrix

elements were calculated in the form [ Egs. (3.7) and (3.49),
Ref. 9]

(8| U |¢) = exp(iS(¢,¢*,1))(2im sin(z))~ /2.

(4.5)

(4.7

Before attempting a comparison between the present re-
sults and the corresponding ones of Refs. 8, 14, and 15, we
have to go from SU(2) coherent states to Np4 coherent
states (Gaussian wave packets in the space or momentum
basis). The procedure consists of contracting the SU(2) al-
gebra into the Np4 algebra and simultaneously mapping the
coherent states. The details of the method are explained in
detail in Refs. 1 and 18. We recall here the main results.

Under the limit J— oo the operators and coherent states
associated with SU(2) go into operators and coherent states
of Np4 in the form

SU(2) - Np4,
J, +J ~N=a%*a (number operator),
J./(2NHV?>~a*  (creation operator),

J_/(2))"?*>a  (destruction operator),
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[, —J)=[0) (N]0)=0|0)),

2N'"y-y (4.8)

The contraction can be seen in essence as the linear ex-
pansion of the phase space { y,x*} around the point {0,0}.

With these identifications, we obtain, from (4.6), the
matrix elements of F = exp( — itN) expressed as

(coherent states map).

(BIF|9) = lim (|U [$)e~ " = exp(yp*e™"), (4.9)

where the limit will be understood as the contraction proce-
dure previously outlined.

This latest expression (4.9) is exact and is the one ob-
tained in Ref. 8, while it appears in Refs. 14 and 15 multi-
plied by ¢“/2. This factor is irrelevant in the present trivial
example but it accounts for a missing term in the general
semiclassical expression of Ref. 14. (In Ref. 15 the factor
was compensated by an ad hoc identification of the classical
Hamiltonian.)

The contraction procedure applied here is not limited to
the Hamiltonian of the example and is valid in general.

V. CONCLUSIONS

We have developed the semiclassical propagator in
terms of SU(2) coherent states in an almost closed form.
The resulting formula is well behaved for short times and in
addition it matches the exact result for Hamiltonians which
are linear combinations of the SU(2) generators. It also
agrees with the results obtained in Ref. 8 using Glauber’s
coherent states in a direct WK B approximation to the SP in
the P-form.

Looking for possible generalizations, we recall here that
the present approach is fully based on the existence of an
algebraic classical limit,'® expressed by the large (2J) ap-
proximation. While it does not appear that it could be diffi-
cult to generalize these results to other systems from a techni-
cal point of view, it is worth keeping in mind that the existence
of an algebraic limit is a requisite from both physical and
mathematical points of view. (It may express the existence of
a large number of particles or quasiparticles or to have other
meaning depending upon the problem.)

In order to make sense the evaluation of the integrals by
the Laplace or saddle point methods it is required that the
overlap between two unnormalized coherent states behaves
as C*, where C is a complex number and 4 is the order pa-
rameter that is expected to be linked with physical situa-
tions. The nonexistence of a parameter in which the asymp-
totic expansion is carried out makes the application of the
Laplace method uncertain and does not make room for nec-
essary operations like the one performed while going from
(3.6) to (3.7). As a major mention of the importance of this
fact we recall that the standard time-dependent Hartree—
Fock equations, which have been formally derived in the
classical limit,*'" do not have an identified large parameter
associated.?® This fact raises important questions about the
justification of these derivations.

As a physical situation that may be treated by the pres-
ent approach we may mention the Coulomb excitation of a
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nucleus as the result of scattering if the nucleus is described
by an IBM model.*® Another point of possible physical inter-
est is the requantification of the solutions applying Gutz-
willer’s method?? adapted to CS’s. In this context, the lowest
lying state in this approximation is the one predicted by the
random phase approximation as it may be easily realized
shifting the real time to an imaginary one (i3) and looking
for the f— « limit (i.e., the zero temperature limit).

Our last point about the present approach is that it does
respect dynamical symmetries if they can be expressed by the
exponential of a linear combination of the SU(2) genera-
tors.® This point brings up several questions as to the correct
way of taking mean values of operators in the semiclassical
approximation because SU (2)-TDHF expressions are sym-
metry breaking (see, for example, Refs. 23 and 24). Further
work on this subject is in progress.
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It is shown that Levinson’s theorem in static potential scattering can be generalized to a
particle dynamically interacting with one-dimensional matter systems (liquids or solids). A
restriction on a particle-matter interaction is that it decays faster than an inverse quadratic of

the particle-matter separation.

I. INTRODUCTION

Levinson’s theorem is one of the classic theorems in
scattering theory. For s-wave motion of a particle in a spheri-
cally symmetric potential ¥(r) in three dimensions, Levin-
son showed that the scattering phase shift (k) as a function
of incident wave number k is related to the number of s-wave
bound states N as

N=686(+0)/7m (D)

under certain conditions on the potential ¥ (r) (Refs. 1 and
2). Jauch’ and then Kazes* and Ida’ later developed the
method of scattering operator algebra, and succeeded to gen-
eralize the theorem to cases of nonlocal potentials. In this
paper, we shall point out that the theorem can be generalized
to the case of dynamical particle-matter interactions in one
dimension (1-D).

A desire for this generalization arose in the course of our
recent study of low-temperature adsorption of atoms on a
material surface.® Consider a scattering eigenstate charac-
terized by two wave numbers &, and k, of the incident parti-
cle as shown in Fig. 1(a) (the particle motion is in the xz
plane). The scattering wave function takes an asymptotic
form at z— o of

[k +) ~poe™ (e ™™ — S(k, k. )e"), 2)

where ¢, represents the matter ground state (7 =0 K for
simplicity, and we assume that the ground state is nondegen-
erate), and the S-matrix element S(%,,k,) is in general a
function of both k, and &,. Sometimes S(k,,k, ) has a weak
k. dependence, whereby the problem becomes essentially
one dimensional. One such example is found in recent ex-
periments for *He atom scattering from a liquid “He surface,
reporting a weak k., dependence for the reflectance coeffi-
cient as a function of k, and k, (Ref. 7). Indeed, previously
people mainly considered a simplified 1-D model of particle~
matter interactions to study low-temperature adsorption
[cf. Fig. 1(b)]. We note that a 1-D model must be of finite
size, because otherwise the matter does not have a well-de-
fined boundary at finite temperatures, and the question of
calculating, for example, the adsorption probability of a par-
ticle becomes meaningless.®

A long-standing controversy in low-temperature ad-
sorption based on a finite 1-D model concerns the impor-
tance of correlated motions of a particle near a material sur-
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face.>'® This is essentially a question on the importance of
many-body effects. We thus encounter an interesting ques-
tion: is it possible to dynamically generalize Levinson’s
theorem? In this paper, we shall show that there indeed ex-
ists a dynamical version of Levinson’s theorem. The only
restriction in our arguments is that the potential created by a
matter system and seen by a particle must decay faster than
an inverse quadratic of the particle-matter separation. We
also assume that the ground state of the matter system is
nondegenerate, which in fact is very likely the case for a
finite system without a special symmetry.

We have organized the present paper as follows. In the
next section, as a natural generalization of the static case, ™!
we describe a scattering eigenstate of a finite 1-D model,
particularly a Jost function and its general aspects. In Sec.
III, we discuss analytic properties of the Jost solution and
Jost function. To do this, again as a natural generalization of
the static case,'’'? we consider an integral Schrodinger
equation for the Jost solution, and its formal solution in
terms of the Fredholm series. A dynamical generalization of
Levinson’s theorem is then straightforward (Sec. IV). Fin-
ally in Sec. V, our conclusion is given.

7

x
*
=
N

FIG. 1. (a) Three-dimensional geometry for the scattering eigenstate char-
acterized by the parallel and perpendicular wave numbers, &, and k.. (b)
Its one-dimensional simplification when the parallel and perpendicular mo-
tions are approximately separable.
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Il. SCATTERING EIGENSTATES

The Hamiltonian for a particle interacting with a matter
system is written in general as

H,, =HXP) +V(Xx) +K(@p), (3)

where (X’ ,7’) are vector operators describing the positions
and momenta of the matter atoms, and (x,p) describe the
position and momentum of the particle. Here H(X,P) is a
1-D matter Hamiltonian, K (p) is the kinetic energy of the
particle, and V(X’,x) describes the interaction between the
particle and the 1-D matter system. Let us use the notations
7= (X,x), m = mass of particle, and ¢,(X) and E,, respec-
tively, for the ground state of H (X’,T’) (T'=0K) and its
energy. For a given total energy E(k) = E, + #°k */2m, the
Schrédinger equation

H  ¢(rk) =E(k)Y(Fk) €))]

has two independent solutions F(7, + k) with the asympto-
tic properties at x — oo,

F(F, 4+ k) > (X)eT*. (5)

The scattering state 1(#,k) is then given as a linear combina-
tion of the Jost solutions F(7, + k). Noting that (4) is real
and ¥(#,k) is an even function of k, we can write, in general,

Y(7.k) = (i/2k)

To determine the Jost function f(k) in the static case,
one imposes the condition

¢(x=x0yk) =Os (7)

which is a requirement that the particle cannot reach the
point x = x,, where the potential energy is large. The corre-
sponding physical condition in our dynamic case is that

¢(;=;c’k) =0’ (8)

where 7. is a constant vector independent of 4. With a suit-
able choice of normalization, one can then take the Jost func-
tion f(k) as

A remark here is that the vectors 7, which satisfy condition
(8) generally form a hypersurface. A consistent situation,
therefore, is that by choosing the Jost function as (9) for a
special point ¥ = 7, on the hypersurface, condition (8) must
be automatically satisfied for all the other points on the hy-
persurface. In other words, the Jost solutions F(7, + k)
must be strongly correlated.

In the next section, we shall examine an analytic proper-
ty of the Jost solution F(7,k) in the complex & plane, which
leads to the same analytic property of the Jost function f(k)
due to (9). Before doing so, let us mention some general
properties of f( k). First, it is seen from (5) and (6) that the
zeros of the Jost function f( k) on the negative imaginary axis
in the complex k plane describe the bound states of H,,,. In
this paper, we restrict ourselves to those particle-matter po-
tentials which decay faster than an inverse quadratic of the
particle-matter separation. For such potentials, one can
readily see that the number of bound states is finite, and
therefore, except for physically uninteresting accidental si-
tuations,
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S(0) #0. (10)
Second, the reality of H,,, means that

H F*(F,—k*) = EK)F*(F, — k*), (11)
but since F* (7, — k *) ~do(X)e ~** as x— o, we have

F*(F, — k*) =F(F,k). (12)
Now since ¢/(7,k) as given by (6) is areal, even function of &,

Y*(Fk*) = Y(F.k). (13)

From (6), (12), and (13), we obtain the well-known rela-
tionship

S*(—=k*)=flk). (14)
For real k, in particular, upon writing the Jost function as

Sy = |f(k)|e®®, (15)
where (k) is a scattering phase shift, (10) and (14) give

~6( —k) =6(k), (16)

under the convention that §( + « ) = 0. A note on (16) is
that 6( + oo ) need not be the same, so that they are not
necessarily zero.

lll. ANALYTICITY OF THE JOST FUNCTION

We now discuss an analytic property of the Jost solution
in the complex & plane, leading to the same analytic property
of the Jost function due to (9). Let us consider the following
integral Schrodinger equation for F(7,k):

F(Rk) = Fy(Rk) + fdf' KPR F(F ), (17)

where the integral kernel is

K(7Fk)y= — G(FRFRV(F), (18)
V(F)=V(Xx), Fo(Fk)=¢,(X)e **, and the Green’s
function G(#,#;k) is defined by
[H(X,P) + K(p) — E(K)IG(+F:k) =8(F —F).  (19)
Introducing an orthonormal complete basis set {¢, (X)} for

the matter Hamiltonian H (X, ,T’), we can write the Green’s
function G as

dkr eik’(x—x')
G(F#k) =
=2 | S o Tk ke
X ¢, (X)g*(X "), (20)

where E (i) is the energy difference between the states ¢, X
and @,(X), and we have put #/2m = 1. In (20) we have
added the term je (€ = infinitesimal positive number) in the
denominator to describe an outgoing wave.

In carrying out the k£ ' integration in (20), as will become
clear below, we need only consider % in the region D sur-
rounded by the contour C: [ — kgkpl, [kgko—i],
[ko —ioo, — kg — i ], and [ — kg — ic0, — k], Where &,
is an infinitesimal positive number. On the other hand, our
1-D matter is finite, and thus the excitation above the ground
state has a gap, that is, E(7) > 0. Therefore, for & in the re-
gion D, it is always realized that

E(i,k)=[E@U) — k21> 0. 2n
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With (21) in mind, we perform a contour integral over X ' to
obtain
G(‘”’k) e—E(i,k)[x——x'l ¢ (X’)(ﬁ'(i")
FFE) =) ————¢; : .
E,-: 2E(L,k)
The integral equation (17) can be solved formally by the
Fredholm method'3:

(22)

F(7 ) = Fy(7.k) +%fdi’ AGHIFFK),  (23)
where
=14+ 3 2 Jd?,~--fd?,,
n=1 n!
Ky - Ky,
x| P (24)
Knl Knn
where K (7;,7,) is abbreviated as K; and
-t -~ (— )"J‘ =~ J‘ ~
A(FF) =K(FF) + dry--- | dF,
(77) ( ) n;; l 1
Krr’ Krl T Krn
K K - K,
X .lr’ ‘ll .l (25)
Knr’ Knl T Knn

We note that both F,(7,k) and the kernel K (7,7), as given by
(18) and (22), are analytic in region D. Therefore if the
Fredholm series in (24) and (25) converge, we reach the
conclusion that the Jost solution F(#,k) as given by (23) is
also analytic in region D.

We now show the convergence of A. In a similar way, we
can show the convergence of A (7,7 ). We first note that from
(18) and Hadamard’s inequality'* we can write

Jd?l"'J‘df‘,, det |k ||
1<ij<n

<fdx1---fdx,, fdiq---fd;?n
XV -V ED N8l llgall, (26)

where ||g; ] is the norm of the ith column vector of the matrix
G ;. Next, since our k is in the low-energy region D, the exci-
tation of the matter from its ground state ¢,(.X) is limited to
a finite number of low-lying excited states, i.e., with some
integer I, (22) gives

6, (X), (X )]
G, |l S 2Tt T
G| Z 2E(i k)

The wave functions of low-lying excited states are well local-
ized in the X space, and therefore, when carrying out the
integrations f dx PERRS ¢ dX',, in (26), one can apply the aver-
age-value theorem. This means that there exist a certain con-
stant vector X, and finite constants 4 and B such that

de?l'"fdi’n|V(7'1)'"V(7‘n)|'”g1||'”“gn||
= |V(Xox )| | V(Xox,)|

xjd)?,-~-Jd7r,,||g1||---||gn||

(27)
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Re k

FIG. 2. The contour C in the integral of (31). The crosses on the negative
imaginary axis denote the zeroes of the Jost function f(k).

IV (Xox )| | V( XX, ) |A " (Br'?)". (28)

Physically, X, describes a most probable configuration of the
matter atoms at low temperatures. We finally note that since
our |V (X,y,x)| decays faster than x~2 at x— oo by assump-
tion,

de| V(Xox)| <M < . (29)
From (26), (28), and (29) we obtain
f dF, f dF, det |K,||<(MAB)"n"”, (30)
1<ij<n

which assures the convergence of A.

IV. DYNAMICAL LEVINSON’S THEOREM

In the preceding sections, we have discussed some gen-
eral properties of the Jost function f(k) and its analytic
property in the complex k plane. We are now ready to claim
the existence of dynamical Levinson’s theorem in a similar
manner as in the static potential scattering,

1 fk) IJ'
Ny=—— | dke——Z=L= —— | d[Inflk
b 2miJe f(k) 2mi Je [ins(k)]}
= — (172m)[6( —0) —6(+0)] =6(+ 0)/m,

(31)
where N, is the number of bound states of H,,, and the
contour C is as given in Fig. 2. This can be seen as follows:
since the Jost function f(k) is analytic in the region D sur-
rounded by the contour C, the integrand /' (k) /f(k) has sim-
ple poles of unit strength at zeroes of f(k), each of which
corresponds to a bound state. For g degenerate bound states,
the strength of the corresponding pole is g. This is the first
equality in (31). The remaining equalities in (31) are trivial
from (10), (15), (16), and the analyticity of f(k) in region
D.

V. CONCLUSION

In this paper, we have considered a 1-D model which
describes a particle dynamically interacting with a finite 1-D
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matter. We have shown that if the matter has a nondegener-
ate ground state and is well localized in space, and hence the
collision of the particle with the matter is well defined, and if
the particle—matter potential decays faster than an inverse
quadratic of the distance, there exists a dynamical version of
Levinson’s theorem, connecting the zero-energy phase shift
8( + 0) to the number of bound states of the total system.
This dynamical Levinson’s theorem has recently played an
essential role in the study of low-temperature adsorption.®
Furthermore, in light of its general, many-body character,
we expect its fruitful applications in other physical prob-
lems.
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Double Kerr-Schild equivalence and hyperheavens
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Double Kerr-Schild equivalence of hyperheavens is studied within a spinorial formalism based
on the fact of the existence of a congruence of self-dual null strings. In particular, it is shown
that a given hyperheavenly metric structure generates all members of the corresponding
equivalence class in terms of a certain spinor field and the generalized key function subject to
the generalized hyperheavenly equation. The treatment is manifestly covariant: no coordinates
are employed. Finally, a link with the classical results on hyperheavens (Plebanski and
Robinson [J. F. Plebanski and I. Robinson, Phys. Rev. Lett. 37, 493 (1976) ]} and Finley and
Plebanski [J. D. Finley, I1I and J. F. Plebaiski, J. Math. Phys. 17, 2207 (1976) ]} is

established.

I. INTRODUCTION

A theory of algebraically degenerate space-times is one
of those areas of general relativity that has been explored
successfully since 1960." That success is founded, in princi-
pal, on the Goldberg-Sachs theorem.? In fact, it is the exis-
tence of a shear-free congruence of null geodesic lines that is
employed to construct geometric coordinate systems, in
which FEinstein equations can be reduced essentially (see
Ref. 1 and, for instance, Ref. 3). A generalized formulation
of the Goldberg~Sachs theorem in terms of bivectors was
provided by Robinson and Schild in Ref. 4.

A field of Debever—Penrose (DP) null directions can be
viewed as an intersection of two distributions, of two-dimen-
sional, complex subspaces that are totally null (any two vec-
tors of a subspace are orthogonal) and self-dual or anti-self-
dual, respectively. With each of them there is associated a
simple bivector. Now, in Einstein spaces,’ the Goldberg—
Sachs theorem states that a DP direction is algebraically de-
generate if and only if those distributions are formally inte-
grable, i.e., a collection of all complex vector fields contained
pointwise in subspaces of one of these distributions is closed
with respect to the Lie bracket operation. That fact can be
restated conveniently in terms of the corresponding two-
forms. The formal integrability does not yet mean integrabi-
lity in the usual sense (i.e., the existence of integral submani-
folds) since the space-time is real and the subspaces are
complex. However, if the space-time can be extended ana-
lytically, one gets integrability of the corresponding distribu-
tions. Their integral submanifolds are called left or self-dual
null strings and right or anti-self-dual null strings, respec-
tively. That fact has been one of the main reasons that
brought the idea of a complex space-time into general rela-
tivity. The complex version of the Goldberg—-Sachs theorem
was discussed extensively by Plebanski ez al. in Refs. 6-8.

It turns out that for a general complex Weyl tensor,
algebraic types of its self-dual and anti-self-dual counter-
parts are independent. This is unlike the situation in a real
case, where both of them are identical.

The first attempt to integrate Einstein equations was
made for complex space-times with a trivial one of the irre-
ducible parts of the Weyl conformal tensor.”~'! These spaces
are referred to as heavens. (There has been an independent
interest in them due to Newman'? and Penrose.’®) Soon it
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was realized that similar results can be obtained for hyper-
heavens, i.e., complex space-times with one-side-degenerate
conformal curvature tensor.'*™'* The metric structure of a
hyperheaven is determined entirely by one scalar function,
fulfilling a differential constraint of the second order.

It turned out that the complex line element of a hyper-
heaven exhibits an interesting algebraic structure. It is dou-
ble-Kerr-Schild (dKS)-equivalent to another metric which
is flat. To put it in other words, the difference between these
two metrics is spanned at each point by two null and orthog-
onal vectors. Moreover, those vectors are tangent to the null
strings associated wtih the algebraically degenerate part of
the conformal curvature tensor. Thus

ds=n+Adkek+Bmem+Clkem+mek), (1.1)

where 7 is flat, and k and m are null and orthogonal. Those

properties of X and m hold with respect to both metrics, ds*

and 7. Moreover,
[k,m]IAkAm=0. (1.2)

We want to point out that the idea of dKS equivalence is
not new. The concept was discovered by Plebanski in Ref.
16. (See also Refs. 17 and 18.) In a paper by Plebanski and
Schild, the authors discussed dKS-equivalent metrics
(called there dKS-conjugated) using the nuil-tetrad formal-
ism.'®

To describe hyperheavens one constructs a coordinate
system {qA,pB}, A,B = 1,2, such that two-dimensional sub-
manifolds ¢g* = const form the congruence of self-dual null
strings and {p”®} are some parameters along them. Then K
and m are spanned by {dg"} only. Working in that coordi-
nate system, one obtains from Einstein equations the exis-
tence of the key function and the corresponding hyperhea-
venly equation.'’

Although this result reflects geometric properties of a
complex space-time it has been derived in specific coordi-
nates. In this paper we reformulate it in a covariant way. We
get an even more general result. To arrive at it one considers
instead of (1.1), the relation

ds? =ds®* + Akek + Bmem + Clkem+mek),
(1.3)

where ds? is this time a given hyperheavenly, otherwise arbi-
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trary metric structure. For ds'” to be a hyperheaven one ob-
tains some conditions on 4, B, and C, that can be reduced to
the existence of the so-called generalized key function and
the corresponding generalized hyperheavenly equation. Ob-
viously, the generalized key function depends on a choice of
ds*. However, the result is manifestly coordinate indepen-
dent.

We should like to mention here that a problem of a co-
variant formulation of a theory of hyperheavens has been
already discussed in Refs. 20-22. As far as our treatment of
this problem is concerned the main emphasis is put into
dKS-equivalence aspects of that theory.

In Sec. II the basic concepts, facts, and important for-
mulas concerning complex, one-side degenerate spaces are
listed. Most of them were discussed extensively in Ref. 8.

Section III contains the main results of this paper: a
brief outline of a proof of the existence of the generalized key
function and a derivation of the generalized hyperheavenly
equation in its covariant form. In Sec. IV the correspondence
between our results and those obtained by Plebanski and
Robinson** and by Finley and Plebariski'® is established. In
all that it seems to be very convenient to operate on spinorial
objects. In this respect the technique developed by Ple-
bafiski® is appropriate.

il. COMPLEX SPACE-TIMES AND CONGRUENCES OF
NULL STRINGS

Throughout this paper by a complex space-time is
meant a complex, four-dimensional manifold with a holo-
morphic metric structure ds?, that satisfies Einstein equa-
tions

Cupepr =0=R. (2.1)

Here C g stands for the spinorial image of the trace-free
Ricci tensor and R for the Ricci scalar curvature.®

A congruence of self-dual null strings is determined by a
nowhere vanishing spinor field &, such that

k Ak BV ,oky =0. (2.2)

This condition is invariant with respect to arbitrary rescal-

ings of k,, k, — k1, 0. However, one finds it® more ad-

vantageous perhaps, to normalize k£, in such a way that
VABkC =3ZABkC +26ACkMZMB’ (23)

where Z ,; is another spinor field, called Sommers vector.
Now, the rescalings of k, are reduced to those with ¢ being
constrained by

k4 54 = 0. (2.4)

That special normalization of &, , referred to as canonical, is
equivalent to the requirement that the self-dual two-form

S: =k kS4B (2.5)

is closed.®
A careful examination of integrability conditions for
Egs. (2.3) shows (Ref. 8) that
VAZPy =2k YD ep + 224 Z %, — C*%
+ 6CDPAB + EABPCD — GAB(-"CD'I], (2.6)
where

1108 J. Math. Phys., Vol. 28, No. 5, May 1987

7 =4Z,,Z"* — R /24, 2.7)
2045 = kS¢SAB’ k(A Yacpy = — %CAch (2.8)
2045 =k Ysas> Xase = Xawe - (2.9)

The deviation one—form 6 (also known as an expan-
sion)® is

0: = — 2k, kSZspg*®. (2.10)
Here {g*#} stands for one-forms (further on referred to as
null-tetrad one-forms) in terms of which the expression for
the metric tensor ds” reads

ds? = — g, ® g% (2.11)

The Goldberg—Sachs theorem for complex space-times
states that the conformal curvature spinor C g, is algebrai-
cally degenerate, with &k, being its multiple DP spinor, i.e.,

CABCD =6k(AkB¢'CD)’ (2.12)

if and only if £, determines a congruence of null strings
(Ref. 8).

By a hyperheaven is meant, in this paper, a complex
space-time that satisfies condition (2.12).

From now on all discussion of this section concerns hy-
perheavens. We remark, however, that similar results can be
obtained under much weaker conditions (consult Ref. 8).
And so, the Sommers vector can be put into a form of

Zi =kAaB+%VAB In . (2.13)

Next, let V, be an operator of a covariant derivative
along null strings defined by

V=0 V%PV, (2.14)

and let Q¢;,.. ; be an arbitrary spinor field with dotted in-
dices only. It is not difficult to show that

VY, Qpp.p =0, (2.15)

The computation is straightforward. It involves Ricci identi-
ties,® Eqs. (2.3) and (2.13). Equation (2.15) show that the
comutator of V, and V; is zero, when considered as an op-
erator acting on dotted spinor fields. This feature of V is
very useful in computations. As an application of that prop-
erty one gets a lemma.

Lemma: The equation Vepp...p = Q¢p... i is complete-
ly integrable (i.e., its integrability conditions are satisfied
identically) if and only if V<Qp,... = 0.

Complete integrability implies that the solution exists
for arbitrary “initial data,” where “initial data” means a
two-dimensional surface (transversal at each of its points to
the corresponding null string) together with a spinor field
(¢}

P b...p along it. (That type of a Cauchy-Kowalewski-like
problem has been discussed in a similar context in Ref. 23.)

We notice for future references that, in particular, the
equations of the form

and
VBPAZ&'*B (2.17)
are completely integrable.
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Now, let 8, be defined by

04 =kMZ,A (2.18)
It is not difficult to show employing Egs. (2.14), (2.3),
(2.6), (2.1), and (2.12) that

PU2VAgE = 39495, (2.19)
We remark here that in spaces with a congruence of null

strings such that the corresponding £ is a multiple DP
spinor field, Egs. (2.19) is equivalent to the condition

k*k®C pep = 0. (2.20)
The same remark applies to the validity of Egs. (2.15). Now,
notice that because of Eqs. (2.14), we have

64 =102V 1n P, (2.21)
This being substituted back into Egs. (2.19) provides a con-
straint on &,

VAVEp-1 = 0. (2.22)
Let J* be a spinor field defined according to

JA4: = Vip~!, (2.23)
andlet P“bea particular solution of Egs. (2.17). Then

VAJE =0, (2.24)
and

¢ '=J,P 4+ K, (2.25)

where the function K is constant along null strings, i.e.,
vV,K=0. (2.26)

From now on, any spinor field annihilated by the opera-
tor V, will be referred to as a spinor field covariantly constant
along null strings.

At the conclusion of this section we remark, that J A #0
if and only if the deviation one-form @ is nontrivial (8 #0).
That fact is a simple consequence of Egs. (2.10), (2.18),
(2.21), and (2.23). .

l1l. dKS EQUIVALENCE OF HYPERHEAVENS

(i) dKS-equivalent complex metrics: Let {g*?} be null-
tetrad one-forms for the metric tensor ds® [Egs. (2.11)]. Itis
not difficult to prove that two metrics ds'* and ds* are dKS-
equivalent in the sense of (1.3), iff there exist spinor fields
k4 (ky#0) and w4,

Dup =W apy> (3.1)
such that the one-forms
g’AB ___gAB + kAa)BNkMgMN (3.2)

represent null-tetrad one-forms for the metric tensor ds’.
Then

ds* = — gl @ g8 =ds* — wpyk,g*® ?kMgMN.
(3.3)

Further on, we shall assume ds* to be a hyperheavenly
metric structure and &, to be the corresponding multiple DP
spinor field constrained, due to the Goldberg-Sachs theorem
(Sec. IT), by the condition (2.3). Our ultimate goal is to
obtain and then to integrate the conditions on w5 for ds’* to
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be another hyperheavenly line element. We adopt the con-
vention that all objects related to ds’> are endowed with
“prime.”

At the first stage one finds relations between the connec-
tion one-forms I');z, I'43 and I' 5, I" ;3. (For definitions of
I"’s consult Ref. 8.) To this end one applies to both sides of
formula (3.2) an operator of the external covariant differen-
tiation D (Ref. 8). Then one employs the first structural
equations

Dg*2 =0,
and the like for primed objects. One gets as the result
HAM /\g’MB + HBM /\g’AM — D(kAwBNkM) /\g‘MN,

(3.4)

(3.5)
where
H;p:=T,; — T/ (3.6)
and
HAB:=FAB - 1’43 (37)
Condition (3.5) can be solved for the components of H,,
andH,-,B, i.e., HABCD andH,-,BcD (HAB = — %HABCbgCD and
H,; = —H ;3.5,8°°) by simple algebraic manipulations

involving spinorial techniques. The final formulas are
Hypcp = kkpVe N“’ND + 6k kpZc, Nwz'vb

— 2wk kpkck ¥Zyy — Kk kgkca™ ik V0 50

+ k4 €B)ckNVNNa)Nb (3.8)
and
Hpep = kckyy{V¥p045 — €ca V"™ 0pn},  (3.9)
where
W= — 5&)33@’-"9, (3.10)

and covariant derivatives of k, have been already eliminated
by means of Egs. (2.3).

At the next stage one finds the correspondence between
S4B S4B and S48 S48 (Their definitions can be found in
Ref. 8.) The computations are straightforward and they
amount to

S4B, % €xs g’AR A g’BS
S8 _ ok U Bk kS ™ — kk BwepS P,

(3.11)

and
S4B — 1e,sg RANGSE =S4 _ ki kPSP, (3.12)
Now, one is prepared to establish relations between
C ' peh, R and C gzep, R. To this end one employs the sec-

ond structural equations (Ref. 8).
One obtains from them

(/2]
Clscp = Cupcep — k(A ka{uco)'cb + CCD)'CD}(O

— ok kg {CCD)MN + UCD)MN}k MEN

+ HRok kgkckp + Veapcpy (3.13)

Cipep = Capep + tapenp — (Capopk kP
— Rk kg + v4pcpk kP)wep, (3.14)
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and
R'=R — 4P, + 4wk *k Bk CkD(CABCD + Vugep )
+ 4k k D(uCD-c,-, -+ CCDCD )wCD, (3.15)
where
Ugpep = — %{VM(CHMBMib) + HAMN(DHM|B I NC)}
(3.16)
and
Vapcp = %{V(DNH[AMC)N + HAM(C\N\HM|810) N}
(3.17)

(Explicit formulas for vz, and u g5 are listed in Appen-
dix A.)

(ii) Thegeneralized key function: The conditionsR ' = 0
and k“C/pcp = 0 can be expressed in terms of w,; by
means of Egs. (3.15), (3.14), (2.12), (A1),and (A5). They
read

VAV3y,, =0, (3.18)

and
VYOV cwp, 5 = 0. (3.19)

We remark here, that &k, is a multiple DP spinor for C /5,
[Egs. (3.13)1,i.e., Cpcpk Bk Sk P = 0. Indeed, it is true for
Cuscp [Egs. (2.12)] and omne can verify that
VU ancoy k Bk <k P = 0 [Egs. (A8)]. This fact shows the con-
sistence of requirements that both ds? and ds'? are to be hy-
perheavenly metric tensors. An integration of Egs. (3.18)
and (3.19) can be carried out as it has been done in similar
circumstances in Ref. 15 (see also Refs. 20-22). Indeed, al-
though in our approach V, is an operator of a covariant
derivative defined in a coqrdinate independent way, it can be
treated formally as “d /dp** due to its property expressed by
Egs. (2.15).

Again, there are two cases to be considered.

Case 1:J ; #0(expanding case): It is not difficult to show
that the general solution of Eqgs. (3.18) and (3.19) can be
represented by

Wuap = 04p —}-V(,;q)_“VB)I’V, (3.20)
where a,; is a symmetric covariantly constant along null
strings spinor field and Wis a function called from now on
the generalized key function.

Case 2: J, =0 (nonexpanding case): In this case
&' =K [Egs. (2.25)] and consequently K #0. The gen-
eral solution of Egs. (3.18) and (3.19) can be represented by

Dyp = ——%K_‘L(APB) +K4VAV3VV, (3.21)
where L, is covariantly constant along null strings spinor
field and P is a particular solution of Egs. (2.17). We re-
mark that the nonexpanding case can be thought of as a limit
of the expanding one'® and therefore a further discussion of
this paper concerns the general case only.

It is to be pointed out that there are alternative forms of
@ 45. Our representation of w,; [Egs. (3.20) ] seems to be
very natural, however, it is not the one that has been em-
ployed in Ref. 15. That point is to be explained later in Sec.
IV. Also in our representation of w; there is some ambigu-
ity for @4z and W. It is not difficult to figure out. It turns out
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that the transformations, which preserve w,y, are of the
form

WoW+ AW, (3.22)
and
Qup—p + Aagg, (3.23)
where
AW =Ago + O {A _50 + (PM;)A 50
+ (PYK)A 5, ), (3.24)
Aayy =WJpB 50 + 24K A s, (3.25)

The coefficients A,,,’s are covariantly constant along null
strings, and K is a covariantly constant along null strings
spinor field such that

K47, =1. (3.26)

Consequently, one can always arrange Aa,; in such a
way that the new a; fulfills the following condition:

azK2=0. (3.27)

(iii) The generalized hyperheavenly equation: It turns
out that a pattern of an integration of Einstein equations
discovered in Refs. 14 and 15 (see also Refs. 20-22) mani-
fests itself in our approach as well. To be more specific, let /,
be a spinor field such that

k4, =1, (3.28)
The field equations C/zep = O for the metric tensor ds’

(one assumes that R ' = 0 has been already satisfied) can be
split into a triplet of equations

ClipenkkZ=0, (3.29)

C ek ?1? =0, (3.30)
and

Clpenl 1 =0. (3.31)

It turns out that with Egs. (3.29) and (3.30) being satisfied,
Eq. (3.31) can be put into a form of

VeVyA =0. (3.32)

To find the corresponding A one has to pull out the operator
V-V in front of the left-hand side member of Egs. (3.31),
expressed already in terms of W, and their derivatives.
That requires a repeated application of the Leibnitz rule for
differentiation of a product of spinor fields, Ricci identities,
and Egs. (2.3), (2.6), (2.13), and (3.28). During that pro-
cess one gets some compensating terms, which are not of the
form V-V ,v. It turns out, however, that the total contribu-
tion from those terms is equal to zero. (See also Appendix
B.) All of that procedure is manifestly covariant; no coordi-
nates are employed.

Before an expression for the corresponding A is pro-
vided, we would like to make a remark. We observe that
from the Bianchi identities

Vi'Casen =0, (3.33)
it follows that
VAC ;50 = O. (3.34)
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Equations (3.34) in turn, imply that there exists a function
C, such that

Cusep =V, VpV:V,C. (3.35)

This result is a simple consequence of the lemma from Sec.
IL.
Now an expression for L can be written down. It reads

A= —1®3(V, DV, 0 W) (VAP VD 3 W)
— BV, Vi (P W) — ¢ OW
+ (12074242 4 50 V420~ 1)V , W
+30H{O0 ! + ©(V4Ep—1)(V 01}

XW —2C za*?, (3.36)

where A
O:= —1V,3V*%, (3.37)
Cup=V,V;C (3.38)

Equation (3.32), after being integrated twice, takes the
form

A=N,PA+T, (3.39)
where A is determined by (3.36) and NV, and T are covar-
iantly constant along null strings. This equation is called
from now on the generalized hyperheavenly equation. No-
tice that A does not depend on /,, as one could expect it,
since /, has been an auxiliary spinor field only [Egs.
(3.28)].

There is still some freedom in the structural elements
that constitute an expression for A, i.e., ®, k4 W, a,;,
and C,;. We now list the corresponding transformations
and their effect on A.

(a) Cyp > Cup + ACy;,
where AC; is such that

AC,; =V, V;AC
and

V.V VeVLAC=0.

Then A=A — 2a*3AC,;.

O)YP—-y®, W-xyW, Cup-xCus,
where y is such that y#0 and Vy = 0. Then A - yA.

(YkA1-yk?, Wy W,

@up -V s, Cap~¥ Cis,
where 1 is such that 0 and V¢ = 0. Then A»¢*A.
(d) W-W 4+ AW, a z—-a,u; + Aayg,

where AW and Aa ,; are given by Egs. (3.22)—(3.25). Then
A—- A + AA, where AA issuch that VoV, AA =0.

An explicit form of AA is this time more complicated
and it will be presented elsewhere.

IV. A STANDARD APPROACH TO HYPERHEAVENS

In this section we show how the original results on hy-
perheavens '*'° can be obtained within our formalism by
certain specifications of coordinates and the metric structure
ds*.
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And so, a coordinate system {q"‘, P} is the one associat-
ed with a congruence of null strings (null strings are deter-
mined by equations g? == const). The metric tensor ds? is flat
and it is of the form

ds* =202 dg’dp,, (4.1)
where

P =jipt + (4.2)
and j, and « are numerically constant.

We choose null-tetrad one-forms { g*%} to be

gi= —\2dp", (4.3)
and

gi= — 20 2dg". (4.4)

A spinor field & in its canonical normalization [Egs.
(2.3)] is given by

k4= (9¥/2)51. (4.5)

Next, we study spinor fields covariantly constant along
null strings, i.e., solutions of the equation

v aup =0. (4.6)

An explicit formula for the operator V, can be worked out.
Then Egs. (4.6) take the form of

6u3

pw 4.7)

+ 1D (puy + €45uM5g) =0
It is not difficult to find its general solution. It turns out that

uy =07 {ujy +v(py + (k/TVk,)}, (4.8)
where k, is a fixed, numerically constant spinor, such that

k4, =750, (4.9)
and ¥ and v are arbitrary functions of g*’sonly, i.e., constant
along null strings. In particular, J“ of Egs. (2.23) is of that
form. Indeed, one can verify that

Jy =V, 0" '= —dV%,, (4.10)

which corresponds to (u,v) = ( — 1,0) in formula (4.8).

As for a spinor field K, [Eqgs. (3.26) ], it can be taken in
the form of

K,= — (D_ln(p;‘ + (K/T)k,i).

Finally, we observe that

Py= —(®7"%/1)ky + ® V2K (py + (k/T)Ky)

(4.12)
is a particular solution of Egs. (2.17). With that choice of P,
formulas (2.25) and (4.2) are consistent.

We now assume that the generalized key function and
the corresponding spinor field @ ,; have been arranged al-
ready in such a way that @43 K ? = 0 [Eqgs. (3.27)]. Conse-
quently,

(4.11)

a,; = —puK, Kz, (4.13)
where p is a function constant along null strings.

Let the function W, be defined by

W, =1ud*(PMK;)? + IW. (4.14)

It turns out that W, is the key function of the standard ap-
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proach to hyperheavens.'® That fact can be verified by a sub-
stitution of W from Eqgs. (4.14) into Eqgs. (3.39). Addition-
ally one has to represent all covariant derivatives involved in
Egs. (3.39) as well as Z,; in the coordinate system {g*, p*}.
The computations are straightforward.

V. DISCUSSION

(i) The results of this paper reveal a mechanism accord-
ing to which any hyperheavenly metric tensor ds can be
used to generate new hyperheavens. To this end the general-
ized hyperheavenly equation has to be solved for the general-
ized key function [Eqgs. (3.2), (3.20), (3.36), and (3.39)].
These results generalize those of Refs. 14 and 15, which from
the point of view of our formalism can be obtained by an
assumption that an initially given metric tensor ds’ is flat
(see Sec. IV).

(ii) An assumption that the metric tensor ds* represents
a hyperheaven does not seem to be very essential. Indeed,
some facts, for instance, Egs. (2.13) and (2.15), do not re-
quire it. Therefore of particular interest is a question con-
cerning the weakest conditions on ds” under which the whole
procedure of an integration of the field equations for ds’2
[Egs. (3.3) ] works again. A partial answer to that question
is already known; ds” can be conformally flat (for details see
Refs. 20-22).

APPENDIX A: EXPRESSIONS FOR ., AND V4500

(iii) In this paper one does not touch at all a problem of
hyperheavens with a cosmological constant and an electro-
magnetic field. They were discussed within a standard for-
malism of Refs. 14 and 15 in Refs. 24 and 25, respectively
(see also Refs. 20-22). One expects, therefore, the corre-
sponding generalization to exist.

(iv) A formalism of this paper is manifestly covariant:
no coordinates are employed. A slightly different approach
to a problem of a covariant formulation of a theory of hyper-
heavens (with a cosmological constant and an electromag-
netic field) has been proposed in Refs. 20-22. The author of
those papers employs canonical coordinates {p*,¢°} and to
arrive at a covariant expression for the hyperheavenly equa-
tion, directional derivatives are translated into the corre-
sponding covariant ones. A discussion is confined to a hyper-
heavenly metric tensor ds'? in a form of Egs. (1.3), where ds®
is conformally flat.
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Here we list expressions for u 5 [Egs. (3.16)] and v, [Egs. (3.17)}:

Uspch = kakglenp + katpyep (A1)
where
Uep =400 M0 yewip — 0000, — 18ZyNZM cop, iy + 0 Y0y V0 b5 + 3Z e V0,5 + 3Var e Z MV wp, 5
=V cbp, + 30™ 0, V05,5 — 1V 0™V 5 @py g + 1V sy V0 5, (A2)
Upco = 6Zpcwpyn0 " — 122" 03 0p, + 2V c0pyn0 " + 1Zpc V0py 5 — 2006V 5 0py + V5 V0 5 (A3)
and
Viy=kMV,,. (A4)
Next,
Vapcp = %V<CNH|AB\D>N +4 AM(C|N|HM\B[D) N (A5)
where
Ve H ap1pyi = kaks 1V MV ¥oys + 122NV o, Mgy + 60305,V (N Zp) ™ + K oV, ¥ (0™ Vg — 208,
+ 9k Zpy MM Vi — 2005) + 36Z NZ o) Mw s — K 4€5y {407V o, Mo yx
+ Vo, M M0 505 4 4V 5, Y0 Mgy + Ak ) 0 ¥0™; Vw4 3Zp, "o + 3625, N0 Moy}
— 2€4c€0,210 VM0 5 + 400 M0} (A6)

and

H o) HM\B \D) N= 6k o Z), M“)NM 6Ra’z‘u‘v +k kgkckp {wLM (ﬁkwmv ) ‘~7L0)MN — 46, wNRwMLﬁLwMN

— 200 "V¥0,5 — 8000 Vw4 — 120ZyyZ ™} — k kyk o (Vp, 050 ) (VR0 + 40 0™, ).

In particular one obtains from Egs. (AS5)-(A7) that

Veascoy k Pk kP =0,
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APPENDIX B: THE STRUCTURE OF AN EXPRESSION
FOR M5Cscn

An expression for [ 11 2C ’pep, (wWith C zep = 0) canbe
worked out from Egs. (3.14), (2.12), and (A1)~(A7).
After some slight changes due to the Ricci identities, it reads

I1%C ypep = Nep + Lep, (B1)
where
Nep = — 06 V™0 "0 gg + 0 Yoy e V0,5
+ 36 Mg Na)MCwND + %CUMNQ('CﬁNa)'D)M
— %e(c{Za)&D) + a)MNﬁMwD)M} (B2)
and

Lep = 0ep{ — Yy k Mk N 4+ 62, ZMV 1 30V, 1M
— 1MV, Y054} + 041965, 12, Y
+ 1MV, M0, 4 3605, V,, 1M}
+ 3V 0y e Z M 4+ 0NV ey
+ 3V V0 5 (B3)

We remark that indices € and D are in positions correspond-
ing to operators Vi and V;,. To see this fact it suffices to
recall an expression for w,; [Eqgs. (3.20)], Egs. (2.21),
(A4), and to confront them with Egs. (B2) and (B3).

1113 J. Math. Phys,, Vol. 28, No. 5, May 1987

'I. Robinson and A. Trautman, Phys. Rev. Lett. 4, 431 (1960); Proc. R.
Soc. London Ser. A 265, 463 (1962).

2J. N. Goldberg and R. K. Sachs, Acta Phys. Pol. 22, 13 (1962).

3G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 1842 (1969).

“I. Robinson and A. Schild, J. Math. Phys., 4, 484 (1963).

*Einstein space is an empty space-time with a cosmological constant. For a
discussion of Goldberg—Sachs theorem in that case we refer the reader to
the next three references.

%J. F. Plebanski and S. Hacyan, J. Math. Phys. 16, 2403 (1975).

M. Przanowski and J. F. Plebariski, Acta Phys. Pol. B10, 485, 573 (1979).

8. F. Plebanski and K. Rézga, J. Math. Phys. 25, 1930 (1984).

°J. F. Plebanski, J. Math. Phys. 16, 2395 (1975).

'93. D. Finley, III and J. F. Plebafiski, J. Math. Phys. 17, 585 (1976).

'IC. P. Boyer and J. F. Plebanski, J. Math. Phys. 18, 1022 (1977).

2E, T. Newman, Gen. Relativ. Gravit. 7, 107 (1976).

3R, Penrose, Gen. Relativ. Gravit. 7, 31 (1976).

!47. F. Plebanski and I. Robinson, Phys. Rev. Lett. 37, 493 (1976). See also
in the Proceedings of the Symposium on Asymptotic Structure of Space-

Time, University of Cincinnati, Ohio, June, 1976, edited by F. P. Esposito
and L. Witten (Plenum, New York, 1977).

'3]. D. Finley, III and J. F. Plebafiski, J. Math. Phys. 17, 2207 (1976).

'¢J. F. Plebanski, Ann. Phys. (NY) 90, 196 (1975).

7. F. Plebanski, Ann. NY Acad. Sci. 262, 247 (1975).

8], F. Plebanski and M. Demiafiski, Cal. Tech. preprint, OAP-401, April,
1975.

1°]. F. Plebanski and A. Schild, Nuovo Cimento B 35, 35 (1976).

20G. F. Torres del Castillo, J. Math. Phys. 24, 590 (1983).

21G. F. Torres del Castillo, J. Math. Phys. 25, 342 (1984).

22G. F. Torres del Castillo, J. Math. Phys. 26, 152 (1985).

231. Robinson and K. Rdzga, J. Math. Phys. 25, 1941 (1984).

24A. Garcia, J. F. Plebanski, and 1. Robinson, Gen. Relativ. Gravit. 8, 841
(1977).

25]. D. Finley, III and J. F. Plebanski, J. Math. Phys. 18, 1662 (1977).

Krzysztof R6zga 1113



New analytical models for anisotropic spheres in general relativity

J. Ponce de Le6n?
Universidad Simon Bolivar, Division de Fisica y Matematicas, Departamento de Fisica, Apartado 80659,
Caracas 1081-A, Venezuela and Departamento de Fisica, Facultad de Ciencias, Universidad Central de

Venezuela, Caracas 1051, Venezuela
(Received 8 July 1986; accepted for publication 10 December 1986)

Two new exact analytical solutions to Einstein’s field equations representing static fluid

spheres with anisotropic pressures are presented. One solution has a maximum value of mass of
about 0.42 times the radius of the fluid sphere, dictated by causality and the corresponding
values for the surface red shift and the central red shift are 1.58 and 9.03, respectively. The
other solution has a maximum mass of about 0.435 times the radius of the fluid sphere and the
corresponding red shifts from the surface and from the center are 1.77 and 16.28, respectively.
In the low mass limit both solutions reduce to the constant density Schwarzschild interior

solution.

I.INTRODUCTION

In investigations concerning massive objects in general
relativity the matter distribution is usually assumed to be
locally isotropic. However, in the last few years theoretical
studies on realistic stellar models indicate that some massive
objects may be locally anisotropic.'~ In the literature there
are a number of interesting solutions that have provided in-
sight into the effects of anisotropy on star parameters.®®
Nevertheless, many of these solutions have a limited applica-
bility to astrophysical situations since they do not satisfy
certain physical restrictions usually imposed upon density
and pressure, viz., that the pressures should not exceed the
energy density (dominant energy condition), and that the
(adiabatic) derivatives of the pressure with respect to the
density should be less than or equal to unity® (macrocausa-
lity condition).

In this paper we propose two new analytical models for
anisotropic, static fluid spheres. These models are exact so-
lutions to the Einstein’s field equations and have reasonable
physical properties. The metric coefficients are sufficiently
simple so that all quantities of interest (such as mass, radius,
surface, and central red shifts) can be computed exactly.
One of the assumptions made for obtaining the solutions is
that the space-time be conformally flat. This assumption has
been widely used in the literature,'*2° and it is well known
that the Schwarzschild interior solution is the unique con-
formally flat, static perfect fluid space-time. Therefore in the
low mass limit ( <the fluid radius) the solutions obtained
become identical (to first order in mass/radius) to the
Schwarzschild interior solution.

Il. FIELD EQUATIONS

The line element for a static, spherically symmetric dis-
tribution of matter may be written as

ds’ =e"" dt* — & dr* — P(d6?* +sin*0dp?). (1)

® Postal address: Apartado 2816, Caracas 1010-A, Venezuela.
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With this choice of coordinates the Einstein’s field equations
for an anisotropic fluid read

8mp= — e~ (/P —A'/r) + 1/P, @)

8mp, = e~ 1/ +v'/r) — 1/7, 3)
o=+ V2o — A 1,'/1')

8 — ” v T}, 4

TP 2 (1’ + > + " > (4)

where the primes indicate differentiation with respect tor, p
is the energy density, and p, and p, are the radial and tangen-
tial “pressure,” respectively.

Now we assume that the space-time is conformally flat.
As is known, the space-time is conformally flat if all the
components of Weyl tensor vanish.*' For the metric (1) our
assumption leads to the equation

1 VP VA (A=)
e — e = =0. (5
T 4 4 2 2r
Equations (3)~(5) may be combined to obtain
xZ,+1—Z—xA=0, (6)

(AZx")y o + 2X°Z )y — X2, —Z + 1y=0, (7)

where A=47(p, —p,), x=r, Z=e %, y*=e¢", and the
subscript x following a comma denotes differentiation with
respect to x.

Equations (6) and (7) can be formally integrated to
obtain the metric functions as follows:

e"‘EZ=1+Cr2+2r2J. A (8)
0 r
evEyZ — rZ[Aeu/Z +B€_u/2]2, (9)
where u is a function of » defined as
e/l/Z
u(r) = 2f dr, (10)
r

and the constants of integration 4, B, and C are specified by
matching the metric functions (8) and (9) to the exterior
Schwarzschild solution for a mass M, at radius ,. The result

18
—u(rg)/2 172
A=—e——[—3ﬂ—l—l+(l—%) ] (11)
2r, r, 7o
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u(ry)/2 1/2

p=* [1_ﬂ+(1—3~ ] (12)
2r, 7 ry

e~ — (1 —2M /r,). (13)

lll. SOLUTIONS TO THE FIELD EQUATIONS

Examination of Egs. (2)—(4) and (8)~(10) shows that
we have three equations in four unknowns, namely, p, p,, p,,
and u(r). The problem becomes determinate by choosing
any of these unknowns as a function of » or by specifying an
equation of state for the stresses. In particular, for the equa-
tion of state p, = p, we recover the well-known Schwarzs-
child interior solution.

Solution 1: For the first solution we choose the energy
density as follows:

8mp = (3C/2)[(3 4+ CP)/(1 + CrP)?], (14)

where C is a constant to be determined from the boundary
conditions. We notice at this point that the perfect fluid solu-
tion corresponding to this distribution has been discussed in
detail by Durgapal and Bannerji.?

In the present case substituting (14) into Eq. (2) we
find

& =2(1+av)/(2 —av), (15)
with
a = (4M /1) /(3 — 4M /r,), (16)

where M and r, are, respectively, the mass and radius of the
sphere, and v=r>/r2.
The function u(r) is given by
_,, 44+ av+ 2422 + av — a®?)/?
e 'y =
v

Xexp[ﬁ sin_l(#)] .

The metric function e” can be obtained by substituting this
expression into Eq. (9) and using 4 and B from (11) and
(12). The density and radial pressure are as follows:

8mprd =3a[ (3 + av)/(1 + av)?],

(17)

(18)
87p,re = [G (4 — Sav — 2J2(2 + av — a®?)'/?
+ av(4 — Sav + 2422 + av — a??)'?)]

X [2v0(1 + av)(av+ G)] !, (19)
with
G= (B/A)4+av+ 222 + av — a®?)'?}
xexp[v2 sin™ (1 — 2av)/3)].
The tangential pressure is given by
8mp, rg = 8mp,ry + 3a*v/(1 + av)’. (20)

At the center of the distribution p, = p,, and the ratio of
central pressure p, to central density p, is
.
p. 314.851B '
Solution 2. For the second solution we choose the metric
function e* as follows:

(21)
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e *=Z= (14 Cr)%/(1 —3CH)?, (22)

where C is a constant. Substituting (22) into the field equa-
tions and using (9)—(13) we find the second solution in the
following form:

yZEev
_ 11680 A +4(1 =381+ /(1 —p)‘]*
1638+ D*(1 —B*(1 — Bv)*

b

(23)

e = (1 +43601)2%/(1 — Bv)?, (24)
2 3,2

ot = 2B+ 1667 + 245°0° 25)

(1+3Bv)°
8up,ry
_2B(3n +2) (4 — 8By — 128%?) — 168(1 — Bv)*
T [28Gn+2)v+ (1—Bu)*1(1 + 3p)>

26)

808 %v + 488 %?
(1 +36v)°

where the parameter  was defined as
B={(1—Q1=2M/ry)"3/(1 +3(1 —2M /ry)""?,

(28)

and M and r, are, respectively, the mass and radius of the

sphere, v=r?/r3, and n is the ratio of central pressure to
density,

n=p./p. =31 =1 =38 (B+1)—1]. (29)

8mp, ry = 8ap,ry + (27)

IV. PROPERTIES OF THE SOLUTIONS

Solutions 1 and 2 are free of singularities and describe
anisotropic spheres whose densities drop continuously from
their maximum values at the center to values which are posi-
tive at the boundary. From Eqgs. (20) and (27) we see that
for the two models p, = p, at the center, whereasp, > p, for
r>0. Examination of Eqgs. (18)-(21) and (28) and (29)
reveals that for the two solutions the central pressure be-
come infinite when the mass reaches 4r,/9. It should be not-
ed that this value is exactly the same as is found in the perfect
fluid Schwarzschild interior case.

It is easy to prove that in the low mass limit, M <r,,

8miZp
N b

-

FIG. 1. Equations of state p, = p,( p) and p, = p, ( p) for solution 1. Dot-
ted curves correspond to p, = 3p, and M = 0.417r,. Heavy curves corre-
spond top, = 0.6 p, and M = 0.425r,. For masses greater than 0.425r, the
fluid becomes noncausal.
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FIG. 2. Equations of state p, = p,( p) and p, = p, ( p) for solution 2. Dot-
ted curves correspond to p. = 3p, and M = 0.427r,. Heavy curves corre-
spond to p, = 0.74p_ and M = 0.435r,. For masses greater than 0.435r, the
fluid becomes noncausal.

solutions 1 and 2 and the constant density’ solution of
Schwarzschild have (to first order in M /r,) the same com-
mon limit, namely, the following:

e *=1— (2M /ry)v, (30)

e'=1—(M/ry)(3—v), (31)
where

v=r/rt.

In addition, solution 1 has the following properties.

(i) The dominant energy condition (p>p,, p>p,)
holds everywhere within the sphere when the mass is less
than about 0.431 7.

(ii) For M%0.425r, dp,/dp<l, and dp,/dp<l
throughout the configuration. For M > 0.425 r, these deriva-
tives exceed unity in parts of the fluid.

For solution 2 we have found that the dominant energy
condition and the macrocausality condition hold at all
points within the sphere for M 50.436r, and M <0.435r,,
respectively. For masses greater than 0.4357, the fluid be-
comes noncausal.

V. APPLICATIONS

To illustrate the astrophysical applications of the solu-
tions we have calculated the surface gravitational potential
M /r,, the red shift at the center Z_, and the surface red shift
Z, under different central conditions. To obtain some nu-
merical values for M and r, we have taken a particular sur-
face density, viz., p, = 2X 10" g/cm?®. The results for the
first and the second solution are given in Tables I and II,
respectively. Figures 1 and 2 show the equations of state p, vs
pand p, vsp corresponding to solutions 1 and 2 for different
values of p./p. .

TABLE I. Neutron star parameters as calculated from solution 1.

TABLE II. Neutron star parameters as calculated from solution 2.

2./p. M/r, Z, VA ro(Km)  M(Mg)
0.1 0.417 5.87 1.45 19.18 5.33
0.33 0.427 9.03 1.61 19.11 5.44
0.74 0.435 16.28 1.77 19.05 5.52
1.00 0.436 18.57 1.79 19.02 5.33

infinite 0.444 infinite 2.00 18.92 5.60

P./p M/ry Z, Z, ro(Km) M(M)
0.1 0.401 3.94 1.247 20.41 5.46
0.333 0.417 6.41 1.454 20.58 5.72
0.6 0.425 9.03 1.581 20.61 5.84
1.000 0.431 12.95 1.691 20.66 5.94
infinite 0.444 infinite 2.000 20.74 6.14
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VI. CONCLUSIONS

We have obtained two exact analytical solutions for
static spheres with anisotropic pressures. We have seen that
the first and second solutions are free of singularities and
have reasonable equations of state for masses less than about
0.42 and 0.435 times the radius of the fluid sphere (in geo-
metric units), respectively. The solutions may be used in
describing ultracompact objects.”® An interesting feature of
the solutions is the large value for both the central and the
surface red shift. For example, from Table II we see that fora
neutrino emitted from the center of a star of M = 0.435r, the
red shift at infinity is about 16.28. Tables I and II indicate
that for a surface density of 2 10" g/cm?® the maximum
masses dictated by causality, are about of 5.84M(;, and
5.52M® for the first and the second model, respectively.
Consequently the maximum values for the masses and for
the red shifts, in our models, are greater than that obtained
from perfect fluid models computed under similar condi-
tions.?>*® However, it must be emphasized that for each
fixed value of p./p. an increase (decrease) in the surface
density p, correspond to a decrease (increase) in M /M,
and also in r,, so that “neutron star” models smaller (big-
ger) in mass and size are obtainable from our solutions. The
tables also show that the masses and radii of our models are
relatively insensitive to the ratio p./p,. (i.e., to the limiting
form of the equation of state at the center). It is interesting to
note that a similar feature has the perfect fluid model of
Misner and Zapolsky.?
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On spherically symmetric shear-free perfect fluid configurations (neutral and

charged). |

Roberto A. Sussman

School of Mathematical Sciences, Queen Mary College, Mile End Road, London E1 4NS, England

(Received 12 February 1986; accepted for publication 31 December 1986)

A class of solutions describing a wide variety of nonstatic, spherically symmetric, charged,
shear-free perfect fluid configurations is derived. It is presented in the form of Jacobian elliptic
functions characterized by seven free parameters: five constants and two arbitrary functions of
time. This class of solutions is the most general charged version of the class derived by
Kustaanheimo and Qvist [ Comment. Phys. Math. Helsingf. 13, 12 (1948); Exact Solutions of
Einstein’s Field Equations (Cambridge U. P., Cambridge, 1980), Chap. 12, Sec. 2]. It is found
that many of the charged particular solutions expressible by elementary functions are new.
Particular solutions, including neutral and uniform density solutions, are classified in detail.
The physical interpretation of these solutions, including the study of their singularity structure,

will be presented in a subsequent paper (Part II).

l. INTRODUCTION

A physically motivated approach in the process of find-
ing exact solutions in general relativity would start with sup-
plying a realistic equation of state and a given set of initial
conditions; then solving the set of Einstein (or Einstein—
Maxwell) equations would determine the dynamical evolu-
tion of the configuration. Proceeding with this physical
strategy, even assuming spherical symmetry and that matter
can be described by a perfect fluid, one usually finds intracta-
ble equations requiring numerical integration. Therefore in
order to find analytical solutions which (one hopes) would
be physically relevant, many authors turn out to a strategy of
“mathematical simplicity” which inverts the priorities of the
physically motivated strategy.

Spherically symmetric shear-free perfect fluid solutions
(which will be denoted hereafter as “SSSF solutions”) are a
typical example illustrating the strategy of mathematical
simplicity. That is, instead of supplying an equation of state
and then finding out how the fluid evolves, a given simple
fluid motion (i.e., shear-free motion) is imposed on the fluid
from the outset so that Einstein (or Einstein-Maxwell)
equations simplify considerably to the point where they can
be integrated analytically. Then, the state variables that
make the fluid evolve in this simple manner are found
through the same Einstein (or Einstein-Maxwell) equations
and the Bianchi identities. Following this procedure, an
equation of state need not be imposed, and the state variables
are treated as some sort of “agents” ensuring that the fluid
moves in the prescribed shear-free manner. However, be-
cause of the lack of an equation of state, the Einstein (or
Einstein-Maxwell) system of equations remains undeter-
mined, so that the solutions obtained contain arbitrary pa-
rameters that cannot be fixed with the information con-
tained in the field equations.

Ideally, the strategy of mathematical simplicity would
be successful (from the point of view of physics) if the above
mentioned free parameters could be fixed in such a way that
the state variables ended up obeying a reasonable equation of
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state. This is the case in the Friedman—Robertson—-Walker
(FRW) solutions, though one can argue that these solutions
can be derived following a physically motivated strategy plus
imposing extra requirements on the symmetry of space-time.
Unfortunately, for neutral SSSF solutions other than FRW,
this ideal alternative seems to have been ruled out by Man-
souri,' Glass,> Mashhoon and Partovi,>* Collins and
Wainwright,® Srivastava and Prasad,® and Collins.”® These
authors have verified conclusively that the Wyman solution®
is the only SSSF solution (apart from the FRW solutions)
compatible with a barotropic equation of state, which turns
to be unphysical.*”®* A generalization of this result to
charged SSSF solutions was carried on by Mashhoon and
Partovi,>* quoted above, and Srivastava and Prasad.’® As in
the neutral case, the charged version of the Wyman solution
also admits an unphysical barotropic equation of state. How-
ever, Mashhoon and Partovi® found another new charged
SSSF solution (see Appendix D) compatible with an unphy-
sical barotropic equation of state. Therefore, unless SSSF
solutions could be found compatible with physically realistic
nonbarotropic equations of state, the applicability of these
solutions as models of physically realistic objects seems to be
limited. These solutions, though, could still have a theoreti-
cal interest as exact “‘test” solutions surveying the effects of
pressure gradient and (if the fluid is charged) electric forces
in certain extreme conditions, such as the late stages of a
gravitational collapse, or near a space-time singularity,
where the lack of a universal equation of state is not a serious
handicap.

Most papers on SSSF solutions can be grouped in three
categories: (a) authors who discuss the mathematical deri-
vation of the solutions and offer a (sometimes comprehen-
sive) catalog of metrics, (b) authors who have found a given
particular solution (or a reduced class of solutions) and ex-
amine its physical and geometric properties (sometimes in
detail), and (c), authors (the ones mentioned above) who
have concentrated on the question of the compatibility of
these solutions with a barotropic equation of state, and thus,
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one could say, have (to a certain degree) demonstrated the
limitations of the strategy of mathematical simplicity.

This paper (Part I) and its continuation (Part II) try to
close the gap between these almost mutually exclusive cate-
gories mentioned above. In Part I, which fits the category
(a), a large class of solutions is derived and classified. This
class of solutions will be referred to thereafter in Parts I and
II as the “‘charged Kustaanheimo—Qvist (ChKQ) class,” as
it is the most general charged version of the “NKQ” class of
neutral solutions derived by Kustaanheimo and Qvist.'!?
Therefore Part I extends and complements the work of many
authorsin (a), who either have considered only neutral con-
figurations or have derived classes of charged solutions con-
tained in the ChKQ class. Part II examines in detail the
general physical and geometric properties common to all or
to a large number of ChKQ solutions. Since the solutions
dealt with in most papers in category (b) are contained in
the ChKQ class, these papers are thus linked and extended in
Part II by discussing common important features (confor-
mal structure, singularities, global view, etc.) which have
been omitted or marginally studied by these authors. In par-
ticular, it will prove very useful to compare the free param-
eters of the ChKQ solutions with those of the FRW solu-
tions. The work of authors in the category (c) can be
appreciated then as a search for the specific choices of free
parameters under which a barotropic equation of state is
obeyed. Part II will extend and complement the work of
some authors in this category, such as Collins and
Wainwright,? Collins,”® and Mashhoon and Partovi,* who
have examined some of the above mentioned aspects but
only for the case of the Wyman solution.

Going back to the strategy of mathematical simplicity,
such a strategy allows one to obtain analytical solutions of
the field equations because these equations simplify consid-
erably by reducing the number of independent field vari-
ables. This fact can be appreciated from the work of Barnes"?
and Collins and White,'* who also discussed in detail geo-
metric invariant aspects of shear-free perfect fluid configura-
tions not necessarily restricted to be spherically symmetric.
For spherically symmetric neutral configurations using co-
moving spatial coordinates, the three originally independent
metric coefficients are reduced to one independent quanti-
ty,>'? while for charged configurations one ends up with
only two independent quantities: a metric coefficient and an
electric potential term.'>'¢ In either case, analytical expres-
sions for the independent quantities can be obtained by inte-
grating a single nonlinear second-order partial differential
equation known in the literature as the equation of “pressure
isotropy.”'? This equation, obtained by combining two of
the Einstein (or Einstein-Maxwell) equations, has one of
two variable coefficients for neutral or charged configura-
tions, respectively.

For neutral fluids, there are different procedures to find
solutions of the equation of pressure isotropy. A pioneering
work was that of Kustaanheimo and Qvist'"'? who intro-
duced a suitable ansatz fixing the form of the variable coeffi-
cient, and then found the most general solution (the NKQ
class) under this restriction. More recent papers by Wy-
man,'”'® McVittie,'® Stephani,?® and Srivastava®' have
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further systematized the methods of integration of the equa-
tion of pressure isotropy, investigating which conditions the
variable coefficient must satisfy in order to lead to analytical
solutions. While Wyman, McVittie, and Srivastava worked
within the framework of the theory of differential equations,
Stephani applied to the equation of pressure isotropy a more
elegant method of obtaining first integrals developed by Lie.
These authors have obtained solutions not contained in the
NKQ class, and from their work it can be appreciated how
the ansatz proposed by Kustaanheimo and Qvist follows asa
sufficient condition transforming the equation of pressure
isotropy into an equation whose solutions are expressible in
terms of elliptic functions.

For charged fluids, the equation of pressure isotropy
involves two arbitrary variable coefficients,*!® and it should
be possible to generalize the algorithms used for solving this
equation in the neutral case. In a recent paper, an algorithm
proposed by Wyman'” was extended to the charged case by
Chatterjee,” obtaining a class of solutions expressible in
terms of elliptic functions. However, as will be shown in Sec.
V, Chatterjee’s expressions are not the most general solu-
tions of the equation of pressure isotropy that one can obtain
following this procedure. Such a general class of solutions is
the ChKQ class which will be obtained here. However, ex-
cept for the solutions discussed in Appendix D, charged so-
lutions outside the ChKQ class are still unknown.

The contents of this paper can be summarized as fol-
lows: Sec. II shows how the assumption of shear-free motion
simplifies the metric associated with spherically symmetric
perfect fluid configurations. In Sec. III, the equation of pres-
sure isotropy is integrated leading to a generalization of the
ansatz proposed by Kustaanheimo and Qvist for solving this
equation in the neutral case (see Kramer et al.'?). Section IV
presents the ChKQ solutions obtained in Sec. III expressed
in the form of Jacobian elliptic functions. Table I classifies
these solutions in terms of the parameters appearing in these
functions. Section V presents and classifies particular cases
of the ChKQ class. These cases include the class of neutral
solutions NKQ that are classified in Table II, the Wyman
solution and its electric version mentioned earlier, Chatter-
jee’s solutions,?” uniform density solutions and solutions in
which one of the arbitrary functions of time (time dependent
free parameters) appearing in the integration of Eq. (18) is
set to a constant. Charged solutions expressible in terms of
elementary functions are presented in Sec. VI and classified
in Tables III and VIII. With the exception of the charged
solution presented in Appendix D, all charged SSSF solu-
tions previously examined in the literature can be identified
as particular cases of the ChKQ class. This fact is shown in
Table IV, so that one can identify those charged solutions
which (as far as I am aware) have never been mentioned or
studied before. Section VII presents the subclass of confor-
mally flat uniform density solutions. Neutral solutions and
uniform density solutions (including the conformally flat
cases) expressible in terms of elementary functions are simi-
larly classified and identified in Tables V-VIIL.

Appendix A presents the set of Einstein-Maxwell field
equations, the nonzero components of the Weyl tensor, and
the conformal scalar invariant ¥ ,, calculated for the metric
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tensor given by Eq. (11) in Sec. II. Appendix B shows how
each solution classified in the tables subdivides into a triplet
of solutions, i.e., one solution for each of the three possible
values of k in Egs. (14) and (17). This aspect of the solu-
tions is a sort of generalization of that found in the FRW
solutions, in which these values of k distinguish between
three different solutions whose surfaces of constant cosmic
time have positive, negative, and zero curvature. Appendix
C presents the transformation relating the radial coordinate
used in this paper with that used by authors working with
“isotropic coordinates.” Appendix D discusses some simple
solutions not belonging to the ChKQ class.

Il. SPHERICALLY SYMMETRIC SHEAR-FREE
CONFIGURATIONS

Spherically symmetric, nonstatic perfect fluid configu-
rations (whether neutral or electrically charged) can be de-
scribed by the following metric tensor given in spatially co-
moving coordinates'*:

ds® = g,p dx* dx”

= — G*(t,r)dt* + H*(t,r)dr* + R*(t,r)d€?, (1)
where

dQ*=d6? + sin’0 dg*
and

u®=6%(1/G). (2)

Geometric units have been chosenin (1) and (2), so that the
speed of light and Newton’s gravitational constant are set to
unity. The four-velocity associated with the fluid is #*, while
6% is the Kronecker delta tensor. Greek indices run from
zero to three (coordinates #,r,0,¢), while Latin indices run
from one to three (coordinates r,0,¢). As usual, semicolons
and commas indicate covariant and partial derivatives, re-
spectively.

The kinematical parameters associated with this type of
fluid in this particular coordinate representation are the fol-
lowing®:

expansion,

O=u", = (1/G)[H/H + 2R /R ], (3)
acceleration,

a,=u,zu?=6,"G'/G, (4)
shear,

Oup =Uiap) — Qallg — (0/3)(8up —uatg),  (52)

g, =0,

o, =0%= —10*,=(G/3)[R/R—H/H], (5b)

where a “dot” and a “prime” refer to partial derivatives with
respect to ¢ and r, respectively, and the bracket in the first
and second terms of the left-hand side of (5a) denotes sym-
metrization of the indices a and .

From Eq. (5b), if the motion of the fluid is to be shear-
free, then the metric coefficients H and R are related by

R/R=H/H = R(tr) =f(rH(Lr), (6)

where f (r) is an arbitrary function. As one has the freedom
of performing arbitrary coordinate transformations of the
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form r* = r*(r), one can in particular “absorb” £ () into a
new radial coordinate defined as r* = f (r) (Refs. 12 and
19). However, f (7) will be left unspecified for the time being
and will be fixed in Sec. III by a specific coordinate choice.

If the fluid is charged, it is always possible to introduce a
gauge'*'® in which the electromagnetic vector potential has
the form A, = &8,V (¢t,r). If g(¢,r) is the electric charge den-
sity and the fluid is nonconducting, the set of Maxwell equa-
tions F*’.; = 4rqu” in the comoving representation given
by (1) and (2) reduce to

(RV'/GH) =0 = V'=(GH/R)E(r), (7a)
E' =47qHR* (7b)

A neutral fluid in the presence of a source-free electric field
corresponds to the particular case of Egs. (7) with
E = const. The only nonzero components of the stress-ener-
gy tensor are

T, = —p—E?/87R", (8a)
T'.=p—E?%87R", (8b)
T% =T% =p+E*/87R", (8c)

where p(2,r) and p(¢,r), respectively, denote the matter den-
sity and pressure associated with the fluid. Using the shear-
free condition (6), the Einstein—-Maxwell equation G, =0
for (1) and (8) can be integrated obtaining'?

G(tr) =g(t)H /H, 9)
where g(¢) is an arbitrary function. Although one also has
the freedom to relabel the time coordinate arbitrarily as
t* =t *(1), before computing dH /3¢ explicitly one cannot
“absorb” g(¢) into a new time coordinate ¢ * defined as, say,
t* = (g(¢)dt. This is so, because this function would reap-
pear in the transformed metric coefficient g,.,. due to the
factor dH (t,r) /0t = g(t *)JH (t *,r) /It *. Instead, inserting
(6) and (3) and comparing with (9), one can identify g(z)
as

g(H) =3/0 = 0=0(). (10)

It will be shown in Part II that ® cannot be determined from
the information contained in the field equations, but by phy-
sically motivated boundary conditions on the fluid. Differ-
ent prescriptions of time coordinate will give different rela-
tions between ® and the time derivative of H. For the rest of
Part I, the choice of time coordinate will be kept unspecified
and ® will be thought as of an arbitrary function of time
appearing in the metric coefficient G.

The metric (1), now specialized for shear-free configu-
rations, is given by

ds’ = — ((H/H)/(®/3)) dt? + H>?[dr* + f3(r)dQ?].
(11)
This simplification of the metric (1), which follows merely
by imposing shear-free motion, is the backbone of the strate-
gy of mathematical simplicity mentioned in the Introduc-
tion. The set of Einstein~-Maxwell field equations for (11)
and (8) is presented in Appendix A, these equations are
considerably simpler than the equivalent field equations for
the more general metric (1). In the next section, following

this strategy, analytical expressions will be obtained for the
field variables H and E.
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lll. INTEGRATION OF THE EQUATION OF PRESSURE
ISOTROPY

Analytical expressions for H and E can be obtained by
solving a nonlinear partial differential equation known in the
literature'? as the “equation of pressure isotropy.” This
equation, a consequence more than a definition of pressure
isotropy, is obtained by eliminating p as the Einstein-Max-
well equations are combined in the form

G% — G, =8m(T% —T",)=2EY(fH)* (12)

From the form of Einstein-Maxwell equations given in Ap-
pendix A, Eq. (12) explicitly reads

1 [f'H' 2H"? ~ _1(4H’H’ )
| H —H
H>| fH H? + D H
2E*
~f7HF - "’-+1)]=—.
ST = Tk

Looking at Eq. (13) suggests fixing the radial comoving co-
ordinate 7 by choosing f (r) to satisfy'®*>*4

ff=r2+1=0 = f?=[1-k7],

(13)

that is
r (k=0), (14a)
f(r)=qsinr (k=1), (14b)
sinhr (k= —1), (14¢)

so that surfaces of constant ¢ will be manifestly conformal to
surfaces of constant curvature. Most authors, though, prefer
the so-called “isotropic coordinates” in which these surfaces
are conformally flat. The transformation relating isotropic
coordinates with those given by (22) is shown in Appendix
C.

Using the coordinate choice (14), and multiplying both
members of (13) by H *3H /3¢, that equation is easily inte-
grated once with respect to ¢ yielding

(H’)' H'f’ (H’)2 " 3i(r) 2E*

H Hf H H fH?
where j(7) is an arbitrary function of integration, which, as
shown by Eqs. (A4) and (A5) (see Appendix A), is related
to the conformal scalar invariant W ,, (Refs. 2 and 16). In
order to simplify this equation, it is convenient to introduce
the following quantities>>2*:

Y=1/H,

yir) = J‘ S (Fdr,
(4]
so that f, now as a function of y, is given by

20 =yQ2—ky)
and Eq. (15) transforms into
. 2
A f
where

¥ _ 1y,

d f

Equation (18) is a second-order partial differential
equation in y, therefore its integration determines complete-
ly how H and E depend on r. The time dependence of these

=0, (15)

(16a)

(16b)

(17)
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variables will be contained in (at most) two arbitrary func-
tions appearing as *“‘constants” of integration. The state vari-
ables p, g, and p can be expressed in terms of H and E from
(7b) and the field equations (A1) and (A2) or (A7) (see
Appendix A). However, for each expression H(zy) and
E(y) obtained by solving Eq. (18) one has three different
solutions, each one corresponding to one of the values of k in
(14), (16), and (17). This is demonstrated rigorously in
Appendix B, and is an analogous situation as in the FRW
solutions. In the latter, & distinguishes between solutions
where surfaces r = const have constant positive, negative,
and zero curvature. For more general shear-free solutions,
where these surfaces do not have constant curvature, the
nature of the difference between solutions with different & is
more complicated and will be discussed in detail in part I1.
The most general spherically symmetric shear-free per-
fect fluid solution would be the most general solution of Eq.
(18), that is the solution with arbitrary variable coefficients
Jj(¥) and E(y) and two arbitrary functions of time. Since this
general solution is intractable, one usually fixes a specific
functional dependence of the coefficients j and £ on y so that
Eq. (18) transforms into a differential equation whose first
integral is known. The solutions obtained in this form will
then be the most general solutions under these restrictions.
The procedure to be followed in this section consists of
finding sufficient conditions that j(y) and E(y) must satisfy
so that Eq. (18) becomes a differential equation whose solu-
tions can be given as elliptic functions, that is a differential
equation whose first integral has the form

IW\2 4 )
(22) = 5 @, (19)

dw i=0
where the coefficients b, are arbitrary constants. This proce-
dure is a particular case of a general method which consists
of introducing two transformations: Y- Y(W,h) and
y—y(w), involving arbitrary functions #(y) and w(y) to be
determined by demanding that Eq. (18) has a first integral
expressible in closed analytical form as a quadrature. This
method of obtaining first integrals was developed by Lie and
has been systematically applied to the neutral case (£ = 0)
of Eq. (18) by Stephani,”® where it is shown that the first
integral of (18) with E = 0 will have the form (19) if

Wty) =h(p)Y(ty), (20a)
d dw J

9 _4do 4 20b
dy dy dw (206)

provided that #(y) and @(y) have the forms specified by
Kustaanheimo and Qvist!""'> and Wyman.!” Besides more
general transformations, Stephani considers transforma-
tions like those given by (20) but with forms of 4(y) and
@ (y) leading to first integrals of (18) (with E = 0) different
from (and much more complicated than) (19). In this pa-
per, only the transformation of the type (20) leading to a
first integral like (19) will be applied to the charged case
(E #0) of Eq. (18).

If W and Y are related by (20a) and () is defined by
(20b), then Eq. (18) has a first integral of the form (19)
given specifically by
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2
(‘7—W) — O(w) (21a)
dw
with
QWY =eW* —2uW?> + AW? + L(1), (21b)
where
€ and p are arbitrary constants,
L(?) is an arbitrary function of integration, (21¢)
A=b2—4ac,
provided that j(y), E(y), and w(y) satisfy
Y/ f2=3ulk ]’ (22a)
2E2(p)/fe=26[h()]°, (22b)
do _ 1 (22¢)
dy h?
where
h(y) = [ay? + 2by +c]1 V2,
a, b, and c arbitrary constants. (23)

The form of Egs. (22a), (22¢), and (23) coincide with anal-
ogous expressions obtained by Kustaanheimo and Qvist'"
(the ansatz that they proposed, as mentioned in the Intro-
duction) and Wyman'’ dealing with the neutral case
(E = 0). Chatterjee™ obtained also these expressions plus
(22b) for the charged case, but his expression analogous to
Q(W) is less general than the one given by (21a). Chatter-
jee’s solutions will be discussed in Sec. V.

A second integration transforms (21a) into an elliptic
integral of the first kind:

EF [¥,5] =JZ—"—W-=T<t> +X(),  (24)
z, [Q(W)]'?
where
X(y)sfhz(y)dy (24b)

and 7'(¢) is a second arbitrary function of integration. For
the different possible combinations of constant parameters
a, b, c characterizing 4 (p) in (23), the integral of (24b) can
take any one of the following five forms:

1 In ay+b—1vA

A>0, a#0, X, = WA bt VA , (25a)
A>0, a=0, X, = (1/2b) In|2by +¢|, (25b)
A<0, X5, = (1/vV —A)tan™'(ay + b)/V — A, (25¢)
A=0, b*=ac, X4 = —1/vVa(vay+b), (25d)
A=0, b=a=0, X =y/c (25¢)

The specific values of the integration limits Z, Z, in
(24a) depend on the form of Q( W) (see the next section and
Fig. 1). The spatial dependence of the solutions is governed
by the functions /4(y) and X(p) as given by Egs. (23) and
(25), different types of particular solutions will arise from
different forms of these functions.

The argument W(W,7) = am ™ '[(T + X)/&,7m], mod-
ulus 77, and a proportionality factor £, are defined by the
following relation:
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0O <W<«B or
8 w
///,¢- ZL =0 zZ<«B
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]
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lv)

FIG. 1. The integral (24a) must be evaluated for those values W0 for
which Q( W) > 0. Thus for different forms of Q, one has four types denoting
four different possibilities for range of W and limits of integration in (24a).
These types are illustrated in this figure for solutions given by Eqgs. (27) and
(29). As the range of W is usually contained between consecutive roots of
the quartic Q, this classification also characterizes charged solutions ex-
pressible by elementary functions where Q is a quartic with repeated roots,
and neutral solutions where Q is a cubic. The range of W and the limits of
integration of (24a) will be discussed in Part IT in connection with the phys-
ical and geometric properties of the solutions.

aw . &d¥v

[QOM]'? [1—n?sin®¥]"/?’
so that the specific form of these quantities depends on the
roots of the quartic Q( W). Information about parameters
associated to elliptic integrals and functions can be found in
any standard text on the subject.”> Notice that, in general,
the modulus and the proportionality factor will depend on ¢
through the function L ().

Equation (24a) is the general form representing the
ChKQ class mentioned in the Introduction, and is the most
general solution under the restrictions (22) and (23). It is
characterized by seven free parameters: five constants €, i, a,
b, ¢; and two arbitrary functions of time L(¢), T(¢). The
electric field term E(y) is given by Eq. (22b), so that the
electric charge density ¢ can be calculated from (7b). Par-
ticular cases will be obtained in Secs. V-VII by imposing
restrictions on the free parameters.

(26)

IV. THE “CHARGED KUSTAANHEIMO-QVIST” CLASS
OF SOLUTIONS

In order to classify the ChKQ class of solutions derived
in the previous section, it is convenient to examine qualita-
tively the nature of the roots of a quartic like Q( W). Since
the coefficient € is always non-negative, Q( W) has at least a
minimum and Q— « as W— =+ oo, and also Q( W) has an
extremum at W = 0. The other parameters, ¢ and A, can be
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positive, zero, or negative, so that applying Descartes’ rule of
signs, Q(W) will have at most three positive real roots
(£>0, A<0O, L <0) or at most three negative real roots
(u <0,A>0,L>0).In general, a quartic like Q( W) can be
written as one of the following three forms, according to the
number of real roots:

Q(4) = ez[alW—ﬁ]A ][azw“ﬁzB]
Xla;W—B5C Ja,W—BD],

a,=4+1, B;=+1, i=12734,

D<C<«<B<A, o0,0;0,=1, (27a)
Qi = €la W — B4 1[a,W — B,B1[(W—C)* + D?]

a=+1 B=+1, i=12,

B<4d, aa,=1, (27b)
Qo =E[(W—~A)+B*][(W—-C)+D?.  (27¢)

However, by definition W =4 /H = fh /R, and H and R are
non-negative, therefore once the positive (negative) sign is
chosenin (23) one can disregard negative (positive) roots of
Q(W). Another restriction on the range of W arises when
Q(W) <0, which happens, for example, if Q( ¥) has a mini-
mum between two consecutive real roots 4, and 4, , ,. Thus
the range of W will correspond to those values for which
Q(W) >0, which together with W30, sets for each case in
(27) the limits of integration in (24a). Figure 1 shows the
four different types of range of ¥ and integration limits of
(24a) which can arise for a quartic Q given by Eqgs. (27). As
will be shown in Part I1, the range of W, the roots of Q( W),
and the limits of integration of (24a) bear a strong relation
to regularity conditions and existence of singularities in
these solutions.

Depending on which form one can write Q(W), Eq.
(24a) can be inverted so that H is cast in terms of Jacobian
elliptic functions® as

Ouy: sin¥ =sn[(T+ X)/&9],

1 —a?sn’[(T+ X)/€m]
A, — 4,2 s [(T+X)/Em]
Quy: cos ¥ =cen[(T+ X)/E7m],

n=rt Wt y)al(T+X)/6m]
Cyy— Dy, + (Cy, +D7/z)cn[(T+X)/%2178]b)
Quy: tan ¥ =tn[(T+ X)/E7],

1468, t[(T+X)/Em]
(C2-D%)H{1+34, tn[(T+X)/§,17]}(;

H=h (28a)

H=h

H=h

8¢c)
where the specific form of the parameters a, ¥, ¥ 61, 8,

which depend on the roots of Q, is given in Table L.
An alternative form to Egs. (28), which will be used in

Part II, can be obtained by choosing
T(t) = — X, + F [V, (29)

where W, =W (¢,r,), o>0 being a fixed arbitrary value of the
radial comoving coordinate. With this choice of T, H in Egs.
(28) becomes a function of H, L, and r. Inserting (29) into
(28), these expressions become

Quy: H=h(I1, — &’I,)/ (4,11, — a’4,11,),

1123 J. Math. Phys., Vol. 28, No. 5, May 1987

I, =[1—7%*sin®¥,sn y1?,

I, = [cos Wo(1 — 7*sin ¥,)"?sn y
+sin Yo en y dn y1?,

@ sinW, = (hy — A, Hy)/ (hy — A, Hy),

7y =)L+ (i + )10,
(Cyy — Dy)ILy + (Cy, + Dy,
I, =1 — 7°(1 — %° cos®¥,),

(30a)

Qo H=h

I, =cos ¥ycn y
— sin Wo(1 — 7°(1 + cos®* ¥,))/? sn y dn y,
(Y1 —¥2)ho — (Cy, — Dyy)H,
(¥1+ ¥2dho — (Cyy + Dy2)H,
Hl +51H2
(B~D5)[I, +6,I1,] °
I, =1— (1 —7%*sin®¥,) 2 tan ¥, tn y dn ¥,

cos ¥, (30b)

Co: H=h

I, = (1 — 7*sin®¥,) *tn y + tan ¥, dn y,

(B—Déb,)8,Hy — 6,h,
hy— (B—D5)H,
where the argument of the Jacobian elliptic functions sn y,
cn y, and tn y is given by y = (X — X)) /£. As for Egs. (28),
the quantities 7, &, and the parameters a?, ¥,, and 8, are
defined in Table I. The forms of the solutions given by (28)
and (30) are entirely equivalent, though one form could be
more suited than the other for understanding a given aspect
of the solutions. In Part II, both forms will be used inter-
changeably as needed. Table I provides a classification of the

general forms characterizing the ChKQ class of solutions.

tan ¥, = , (30c)

V. PARTICULAR SOLUTIONS
A. The NKQ class of neutral solutions

If e =0, from Eqgs. (7b) and (22b): ¢ = E = 0, and the
solutions describe electrically neutral fluids. Under this re-
striction, Egs. (24) reduce to Eq. (14.35), p. 168, of Kramer
etal.,'* and one has the NKQ class of solutions discovered by
Kustaanheimo and Qvist in 1948. Expressions for H, analo-
gous to (28) and (30), can be obtained for different forms of
Q, which is now a cubic in W. If € = 0 but £ #0 (the case
1 = 0 will be considered separately, see Sec. VII), Q can
have the following forms depending on the number of real
roots:
Qi) =2|ulla W =54 1[a;W — B,B Ja; W — B5C],

(31a)

Qu, =2u|laW—BA1[(W -8+, (31b)

from which one obtains the following expression analogous
to (28):

g =yt e’ [((T+X)/6)

Qi a,—a, s [(T+ X)/En]
where 7,,5, = 0,1, (32a)
0., H = 1 +#cen[(T+ X)/&m] ’
(A —#A8) + (FA4 + 8)en[(T+ X)/E7]
A=+ 1 (32b)
Roberto A. Sussman 1123
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TABLE 1. This table provides the values of all unspecified parameters appearing in Egs. (27), (28), and (30). These parameters are all given in terms of the roots of the quartic Q, and can be computed right away if
these roots are known. As the spatial dependence of the solutions is given in terms of y defined by Eq. (16b), one has three different solutions corresponding to each value of & in Eqs. (14) and (17) (see Appendix B).
The classification of types (1)—(iv) for the range of W is illustrated in Fig. 1.

Parameters in

o, 7 £2 Y(Zm Range of W Form of Qin (27) (28) and (30)
A—-D
Qe (B~C)Y(A—-D) 4 sin*‘( (B—C)(Z—A))l/z type (i) a==a,=a,=1, aZZBﬂD >1,
(4—C)(B—D) (4—C)(B~-D) (A4—C)Z-B) WA Bi=1, 4>0. A=A, A, =B
:)ypeu(/ii)B a1=az=ﬁ1=/32=1—1, “2=§_g<"2’
(A=) (B=Z)\ << Gm=a=F=F=1 -
sin m D<C<0_ Ai:B! AJ:A
type (iii) Asin type (ii) with 4> B> C>0,
C<W<«B D<0.
Qo i +7)—(4—B)* 1 type (i) o =a,==1,
472 "1v2 W>’?“) 4>0. B =5 )
—1i (72*7|)2+7’|B_7’2A) type (11 == =p= -1 2 2
=(B,B — .
o8 (('Vz+71)2-713*72A 0<W<B O0<B<A. =6 o+
type (iv) As in type (i) with
o Bod ot ¥i= (B —C)+D7.
Qo _ 4o
(o, +05)% L S type (iv) s 4B — (o, — 0’
2 = L 27
P =(4—C)+ (B+DY, (o +02) tan"(—BZ—"(SAZ%) W50 LT o o)) — 4B°
0 =(4~CyY +(B—D). Fod =0 5= B+od

4—5B)"




The argument of the elliptic functions, (7 + X)/£, has been
defined in the same manner as for the ChKQ solutions. The
parameters a,, &,, ¥y, V2, 7%, 6 and the modulus and argument
7 and ¥ are given in Table 11 for Q 5,, Q,,,, and for different
ranges of W. These solutions can be cast in the form (30) by
inserting (29) in Eqgs. (32). Solutions belonging to the NKQ
class, expressible in terms of elementary functions, are dis-
cussed and classified in Sec. VI. It is worth mentioning that
some charged solutions in the class ChKQ do not reduce to
any neutral solution in NKQ as € 0.

B. Chatterjee’s solutions

The expressions presented in (24), (28), and (30) give
the most general form for H under the restrictions (22). As
it was mentioned in the Introduction, Chatterjee? followed
the same method of integration of Eq. (18) and obtained a
similar class of charged solutions. However, these solutions
are contained in the ChKQ class presented in Sec. IV. Chat-
terjee’s solution can be obtained from (21) and (24a) by
setting

B=AY2/24 [A/4—|L|'?]'2 = AV2_ C, (352)

Quy: V24 =A"2/2 + ([AY/16 + L 1'? + A/4)'/?
=A'Y2_ /2D,
V2B=A"?/2+ ([A/16 4 L ]'* — A/4)2

=A"?—v2C. (35b)

Particular solutions of (34) expressible in terms of elemen-
tary functions were obtained by Chatterjee, see Tables III
and IV.

C. MacVittie-type solutions

If L = 0 one has a large subclass of charged (¢0) and
neutral (e = 0, ##0) solutions which contain the famous
pioneering solution obtained by MacVittie®! in 1933. (See
Tables V and VI.) This subclass will be called “McVittie-
type solutions.”

Neutral McVittie-type solutions must not be confused
with the “McVittie metrics” examined by McVittie in a re-
cent paper.'® The latter are also a class of neutral shear-free

=1, A=p%/e®, W=W+pu/2e, (33) solutions with T'(¢) as the only arbitrary function of time,

so that Eq. (21a) transforms into however, these solutions form a larger class than the
~ “McVittie-type” solution presented here, as they include
(QK)Z =W*_ A w4 ( L4+ A_Z), (34) cases with L 0 (Wyman-type solutions discussed below)

do 2 16 and solutions not belonging to the class NKQ, that is, solu-

which coincides with Chatterjee’s Eq. (9) if one identifies
“4” (in Chatterjee’s notation) with L + A%/16. Chatterjee’s
solutions can be cast in the form (28) and (30) just by spe-
cializing the parameters €, &, A as in (33), these solutions
correspond to Q,, type (iii) and Q, type (iv) of Table I
for L <0 and L > 0, respectively. For each case, the roots of
the quartic Q, as it appears in Eqgs. (27), are given by

Quy: A=AY2/2 4 [A/4 4 |L|V?2}V2=AY2 _ D,

tions with j(y) different from (22a) (see Appendix D).
Particular cases of charged and neutral MacVittie-type
solutions, usually describing bounded fluid spheres, have
been examined by authors in the category (b). (See the In-
troduction.) In particular, Chatterjee and Chakravorty>°
derived, classified, and identified all charged McVittie-type
solutions, see Table IV. Since Q has always multiple roots if
L = 0, all McVittie-type solutions are expressible in terms of
elementary functions. They will be classified in Sec. VI.

TABLE II. This table is the neutral analog of Table I, corresponding to solutions given by Egs. (31) and (32). See Sec. V.

o, £? 7 W(Zn) Range of W Parameters in (31) Parameters in (32)
Qi type (i) a,=p=1, 7, =0,
172 he 7 — —
B_C Sm,,(Z—A) W>A.>0 with: i = 1,2,3 =1,
1_C Z—B type (iv) pn<0. a, =4,
W>4 A<0 a,=8.
type (iii) a;=p;=1, 7,=0,
4 -I(Z— C)VZ C<W<B allothera;,8, = — 1, =1,
sin
A—-C B—-C pu<0, A>B>C>0. a,=C,
a,=C—B
_,(A—Z)'ﬂ type (ii) ay=pF= —1,
sin
A—B B<WcA all other ¢,,5;, = 1, =1 a =4,
A_g p>0 C<O. ¥2=0, a,=4-—B
4 sm_l(c_—z)v2 e ) a=h=-1 =0 a=¢C
B—-Z O<W<C i=123, up>0 v.=1, a,=B8.
Qo type (i) a,=6=1, A= —1
— —A— W>A 0, A>0.
/8 5+B—4 Cos,,(Z A 5) > . "< .>
20 Z—A+6/ type(iv) As type (i) above
W>0 with 4 <0.
5—B+ A _ — A+ type (ii) a=8=—1 A=1
2= (B—A)+C? _— 08 '(
F=( ’ 20 S5+A—-2Z/ 0<W<A u>0, A>0.
1125 J. Math. Phys., Vol. 28, No. 5, May 1987 Roberto A. Sussman 1125



TABLE III. The simplified form of H has been obtained by substituting in Egs. (45) the explicit values of the parameters given in Table VIII. The classifica-
tion scheme is explained in the text (see Sec. VI). Notice that each entry of this table represents three different solutions, one for each value of & in Eqs. (14)

and (17) (see Appendix B).

Classification scheme Simplified form of H

ChMcV (r4) (X 4) hand X as in (25a)
ChMcV (r4) (X 5) en[T+X] A and X as in (25¢)
ChMcV(r3)(X 4) ﬂ((T+X)2_ﬁ) hand X as in (25d)
ChMcV(r3)(X5) 2 - " hand X as in (25€e)
ChWy(r3) (X' 1) 12¢h 4 — p*(T+ X)? hand X asin (25a)
ChWy(r3)(X2) u 126 + (T + X)? hand X as in (25b)
4 —~ - 1 b A 172
ChMcV (r2,2) (X 1) L (7 + vaeu)] T(t) = pe™” v(y) =— (ay+ b+ VA, u(y)=(a—yi_i£)
Av(y) R Ja ay+b—JA
ChMCcV (72,12} (X 2) T() = pet”, v(y) =502 u(y)=[2y+c] '
= T ‘A
ChWy(r2,r2)(X1) T(t)=tan‘/—-&—, u(y):tan‘/—X(,), A=1
~ V2e V2e
ChWy(r2,,2) (X 2) VIAJA 1 EAT(Du () as above with A = 62 and X = X5,
Ve Ty tuly)
= JZAT A
ChWy(r2,72) (X 3) A <0, T(t) = tanh /; . u() =tanh Y2 X A= 1
V&€ €
2 ~ 2 2
ChMcV(r2) (X 1) A—(%ﬁ [(T(t) + % u(y)) T, u, and v as in ChMcV (#2,r,2) (X 1) with 4a = Ae” — p°
v(y)yT(:t
1 Ay u and vas in ChMcV(r2,r12) (X 2),
ChMeV (r2) (X2) s E“(y)] T=ng+n(t), bn(t) =LnT(1), 4exp(2bn,) = b€ —
ChMcV(r2)(X3) ril[,uh+(,uz—A52)|A]'/3 T =v —AT, u() =(—A)""(ay+b)
X (sin 7"([) + u(y)cos 7’(1‘))]
uh (T+X)* — 4u, 272 .
ChWy(r2)(X 1 S =7 0 Uy = —, hand Xasin (25a)
yonxh 28 (T+ X7 —u, = Tea?
ChWy(r2)(X2) u, as above. 4 and X as in (25b)
262k T2(1) + 24/ 2u()T(1) — 12(y) = ( 3u ) ( 3u )
Wy(r2) (X4 - = T(t) =expl—-T), u(y)=exp|——X,
ChWy(r2) (X4) 3w T +2u)T() — 2(p) PV 2e Pvze ™
ChWy(r2)(X'5) as above with X = X,
V' 2eh /2 -1 :
ChWy(»2)I(X1) VA [1+sec[(A/2)"(T+X)]] hand X as in (25a)
ChWy(r2)1(X2) h and X as in (25b)
h + T2 FauW) T T12y) T and v as in ChMcV (#2,r2) (X 1) with: €26 = A >0,
1 —_——— = ) s —1/a
ChWytrh) 16, (X D) A T FauW 0 T () @ =2A+NE =V @ =2 ) (=)
ChWy(r2)I15,(X2) as above with X = X ,,

ChWy(r2)I5_(X3) h sin T(t) + u(y)cos T(t) + ah ~!

A sin T(t) 4+ u(p)cos T(t) + azh ~'

T and  as in ChMcV (#2) (X 3) with: €8 = A <0,
A+v S+AA+v)

al:f[a&(;—l’:)]l/z’ =6A[05(§—VZ)]'/2

2

D. Wyman-type solutions

If L is a constant different from zero, one has another
large subclass of charged (¢#0) and neutral (1 #0) solu-
tions containing the famous solution obtained by Wyman® in
1946. The time dependence of H for Wyman-type solutions
issimpler than in the more general case withdL /dt #0, since
the only time-dependent function characterizing the solu-
tions is 7'in Eqs. (28) and (32) [or H, in Egs. (30)].

Wyman’s solution is the particular Wyman-type solu-
tion corresponding to*® € =0, T(t) =¢, L = const, ®/
3= [6Lt+ Ly]"? with L, constant, A =0 with X as in
(25e) with ¢ = 1 and y given by (16b) with k = 0. It can be

1126 J. Math. Phys., Vol. 28, No. 5, May 1987

given in the form of (24a), that is, as an elliptic integral:

r aw
r_ , 36
t+2 J[——Z/zW3+L]”2 (36)

which, save for constant factors and changes of notation,
coincides with the usual expressions provided by authors
dealing with this important solution (see Collins and
Wainwright®). However, the Wyman solution can also be
cast in the form (32b) by inverting (36), as it corresponds to
Q., in Egs. (31) with 4= (L/2u)"3 B= —4/2,
C? =34 ?/4. Thus, with the help of Table II, the parameters
appearing in (32b) and ranges of Win Fig. (1) can be com-
puted explicitly leading to the following three forms of H:

Roberto A. Sussman 1126



TABLE IV. The authors in the left-hand column have been listed chronologically. Comparing the list of solutions examined by these authors with those
presented in Tables III and VIII, it is evident that the following charged solutions expressible by elementary functions are new: ChWy(r3)(X 1),
ChWy(r3)(X2), ChWy(r2,r2) (X 1), ChWy(r2,r2) (X 2), ChWy(r2,,2) (X 3), ChWy(r2) (X 1), ChWy(r2) (X 2), ChWy(r2) (X 4), ChWy(r2}I5,,and
ChWy(#2)16_ with X = X 1, X2, and X 3. See Sec. VI.

Authors

Solutions examined

P. C. Vaidya and Y. Shah,* A. Banerjee,
N. Chakravorty, and S. B. Duttachoudhury®

P. C. Valdya and Y. Shah®

M. C. Faulkes?

P. Vickers®

A. Banerjee, N. Chakravorty, and S. B.

Duttachoudhury®

N. Chakravorty and S. Chatterjee®

B. Mashhoon and H. Partovi®

B. Mashhoon and H. Partovi®
D. C. Srivastava and S. Prasad®

S. Chatterjee'

The class of solutions discovered by Vaidya and Shah include ChMcV (#4) (X 4,5) and
ChMcV(r2,r2)(X 1,2) as particular cases. Other Valdya-Shah solutions do not correspond to the choice of
j(y) and E(p) given by (22). See Appendix D.

They derived the charged version of McVittie solution. This solution is ChMcV (#2) (X 2) withc = 0.

He found the most general ChKQ solution with L = const and with j(y) and E(y) proportional to /% and
3, that is those solutions with X = Xs,. The following solutions are contained as particular cases:
ChMcV(r4) (X 5), ChMcV(r3)(X 5), ChWy(22)I(X 5).

He found ChMcV (#2) (X 2) which contains the charged version of McVittie’s (¢ = 0) and Narial’s solu-
tions (¢#0). See Table VII.

They found the ChWy(73) (X 1) and (X 2) solutions.

They found and identified all charged McVittie-type solutions. This is equivalent to integrating (24a) with
L=0.

They identified the charged version of Narial’s solution as ChMcV (r2) (X 2) with ¢#0.

They obtained the case k =0 of ChMcV(#2) (X 1) and ChMcV(72)(X 2) in a single expression. Their
particular case “v=0" (their notation) corresponds to u?= A€ (my notation) and so to
ChMcV(72,r2) (X 1) and (X 2). They also derive the corresponding solutions with uniform density (see
Table VIII).

They proved that the only charged shear-free solutions satisfying a barometric equation of state are the
charged version of the Wyman solution (see Sec. IV) and a new solution belonging to the class discovered
by P. C. Vaidya and Y. Shah quoted above. The latter was discovered by Mashhoon and Partovi. See
Appendix D.

He integrated Eqs. (24a) with the restrictions given by (32) (see Sec. IV). He rediscovered
ChMcV(r2,r2) (X'1). ChMcV (#2,r2) (X 2). And discovered ChWy(r2)I(X 1) and ChWy(#2)1(X2)
which follow as particular cases from his solution.

2See Ref. 30.
®See Ref. 31.
°See Ref. 32.
9See Ref. 15.

<See Ref. 24. iSee Ref. 5.
See Ref. 34. iSee Ref. 6.
2See Ref. 27. kSee Ref. 12.
"See Ref. 16. 'See Ref. 22.

TABLE V. This table is the neutral analog of Table VIII, with “N” in the classification scheme denoting “‘neutral” instead of “Ch” for charged solutions. See

Sec. VL.
Q- Parameters in (46) Parameters in (21b) Range of W (see Fig. 1) Classification scheme
Qi A=L=0 type (iv) W>0 NMcV(r3)(X4)
NMcV(r3)(X'5)
O |A=0, {=D=A4A L=0 A>0 type (i) p>0, W>2u NMcV(n2)(X1)
type (ii) O<W<2u NMcV(72)(X2)
type (iv) p<0, W>0
L=0, pu<0, A<O type (i) W>2u NMcV(r2)(X3)
A _3A, ¢=pd A>0, u<0 type (i) W>A/6u NWy(r2)(X1)
1"
0> L =A%27u° NWy(r2)(X2)
A<0, L>0 type (ii) O<W<|A|/3u NWy(r2)(X3)
|L | as above
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TABLE VI. The simplified form of H has been obtained by inserting the values of the parameters of Table V into Egs. (47). See Sec. VI. Two neutral solutions frequently mentioned in the literature are those
discovered by McVittie?® and Nariai,>? these solutions are NMcV (#2) (X 2) with ¢ = 0 and ¢ 50, respectively.

Classification
scheme Simplified form of H Previous occurrences in the literature
NMcV(r3)(X4) |u]*h[T + X]? hand X as in (25d) The case k& = 0 was discovered by Banerjee and Banerji.”
Reviewed by Banerjee et al.,® Glass,® and McVittie.®
NMcV(r3)(X5) hand X as in (25¢) The case kK = 0 was discovered by Faulkes.® Reviewed by
the same authors as above.
~ 2 ~ 172
NMcV(r2)(X1) ——1——(T(t) iiu(y)) T@) =27, wu(y) - (ap+b+vA), u(y)= (MA) The case k = 0 was studied by Glass and Mashhoon.! Re-
dv(MT(D) 2 Va y+b—va viewed by Kramer et al.,® Banerjee et al.,® and McVittie.®
- or i Studied and reviewed by the same authors as above. Con-
NMcV(r2){X2) T =e", v =b u(y)=Q2by+c) tains Nariai’s solution (¢£0)® and if ¢ = 0 one has the
McVittie solution.’
NMcV(r2)(X 3) lulh (l + y=A h [cos T(£) + u(y)sin T(¢) ]) T()=v — AT, u(y) = 1 (ay + b) Discovered by Banerjee ef al.® and Wyman/ Particular
4] Va v —A case of solutions presented by McVittie.
—
NWy(r2)(X 1) —[‘Z“’ (1 + 3 tan? [% (T+X)D hand X as in (25a) As above.
NWy(r2)(X2) hand X as in (25b)
— —1
NWy(r2)(X3) %(1 + 3 tanh? [—;A(T+X)]) hand X as in (25¢) As above.
2See Ref. 35. See Ref. 37. ‘See Ref. 26.
See Ref. 36. See Ref. 38. JSee Ref. 17.
“See Ref. 4. ESee Ref. 2.
4See. Ref. 19. "See Ref. 33.



pu>0, L>0, type(ii)
H=d"" Iteny , (37a)
(V34 Denv— (vV3-1)
©n<0, L<O, type(i) H=A4"'[1—cnv], (376)
<0, L>0, type(ivy H=A4"'(1 —cnv)/cnv, (37c)
with

v=t+7/2, A= (L/2u)'? (37d)

and cn v being a Jacobian elliptic function? whose modulus
7, argument ¥, and other parameters can be found from
Table II. The importance of the Wyman solution lies in the
fact that it is the only NKQ solution satisfying a barotropic
equation of state, and thus its physical and geometric proper-
ties have been extensively discussed (See Collins’ and Mash-
hoon-Partovi.*) This solution will be further examined in
Part II, in connection with the study of the properties of
NKQ and ChKQ solutions in general (i.e., not admitting a
barotropic equation of state), and offering a parallel com-
parison with the work of Collins and Mashhoon-Partovi.

The charged version of Wyman’s solution*'® follows
also from (24a) under the same restrictions as the neutral
case with €£0. In this case, the form of Q in Egs. (27) canbe
as Q,, if L <27u*/16€®, or Q o, if L >27u*/16€% and it can
be cast asin (28b), (28c¢), (30b), or (30c¢) depending on the
values of L, i1, and €. It can be of either one of the following
types in Table I and Fig. 1: type (i) if @ has one positive real
root, type (ii) if it has two positive roots, and type (iv) if it
has two negative real root or no real roots. Particular Wy-
man-type solutions expressible in terms of elementary func-
tions will be classified in Sec. VI.

E. Solutions with d7/df=0 but dL/dt+#£0

As far as I am aware, this class of solutions has not been
considered in the literature. Since all the time dependence of
the solutions is contained in the modulus of the elliptic func-
tions, these solutions are as complicated to handle as the
more general case withbothdL /dtand dT /dt different from
zero. In Eqs. (30),dT /dt = Odoes notimply dH,/dt #0, so
that the time dependent of these expressions is contained in
both Hjand L. If € = 0 with ¢ 50, one has neutral solutions
of this type. This subclass (whether charged or neutral) does
not contain particular solutions expressible in terms of ele-
mentary functions.

F. Static solutions

If dL /dt = dT /dt = 0, there is no time dependence in
H, and one has a large class of static solutions. These solu-
tions will be examined in Part II.

G. Solutions with uniform matter density

The necessary and sufficient conditions for matter den-
sity to be independent of » imply a restriction on the form of 4
in (23), this fact can be appreciated from Egs. (A7) and
(A8) in Appendix A. From (A8)

p'=0= J =E' =0 = fh=c,=const.

From Egs. (17) and (23), (38) implies

(38)

1129 J. Math. Phys., Vol. 28, No. 5, May 1987

Act =1, (39a)
c=0, a= —kc,”? b=c, > (39b)

In order to verify that conditions (39) imply p' =0, it is
necessary to evaluate p from Eq. (A7) by eliminating the
term [fR '/R] in terms of R and E using Eqgs. (16a), (20a),
(21a), and (21b). This term is

/R'/R = (fh)'/h — fRR [Q(W)]'?,
where
W=fh/R=h/H

and Qis given by (21b). Inserting Eqgs. (39) and (40) in Eq.
(A7) the latter equation becomes

Sap(r) = @9 —¢,’L(1) . (41)

Uniform density solutions can be either McVittie- or Wy-
man-type solutions if dL /dt = 0, or neither of these types as
there is no contradiction between the conditions for uniform
density and dL /dt 0. For uniform density solutions, X
takes the following form:

X upy zco‘zln]y/(Z—ky)]”z. (42)

The form of H for uniform density solutions is that of (28),
(30), or (32) under the restrictions on # and X given by
(39b) and (42). The neutral case (€ = 0) of these homogen-
eous density solutions has been reviewed by Barnes'® and
Kramer et al.,'? and it has been examined by Eisenstaedt?” in
a cosmological context.

Since Eq. (A8) holds in general for all charged spheri-
cally symmetric shear-free perfect fluid solutions, it follows
from Eq. (7b) that uniform matter density implies ¢ = 0.
Though, if e £0 so that £ = const#0, one has a neutral fluid
in the presence of a source-free electric field. For the ChKQ
class of solutions given by (28) and (30), if the electric
charge density vanishes the fluid must have uniform density.
This is true because J and £ are related by J = u(E / €)>/3,
However, for shear-free solutions for which restrictions
(22) do not hold, one could have neutral fluids in the pres-
ence of an electric field with nonuniform density. Notice that
the restrictions (39) do not imply u = 0, although, for neu-
tral solutions, = 0 does imply p = p(¢) because of Eq.
(A8). The subclass of conformally flat, homogeneous den-
sity solutions corresponding to Eq. (24a) with e=p =0
will be treated in Sec. VII. Particular homogeneous density
solutions expressible in terms of elementary functions will be
classified in Table VII.

(40)

VI. SOLUTIONS EXPRESSIBLE IN TERMS OF
ELEMENTARY FUNCTIONS

The solutions given by (28), (30), and (32) with z#0
reduce to elementary functions if the modulus 7 of the ellip-
tic functions is zero or unity. Since 7, as given in Tables I and
I1, is a function of time only because it depends on L(¢), thus
if » = 0,1, L must be a constant. Therefore, if €40 in (28)
and (30) and ¢ #0 in (32), nonstatic solutions expressible
in terms of elementary functions cannot belong to the class
presented in Sec. V E, and must be either McVittie-type so-
lutions or particular cases of Wyman-type solutions. This
fact can also be appreciated if one recalls that 7 = 0,1 is

Roberto A. Sussman 1129



oLt

TABLE VII. The classification scheme appearing in the first column is analogous to that introduced for solutions with nonuniform density. See Sec. VI. The form of H for the “ChUD” and “NUD” solutions is that of
the corresponding X 1 solution (indicated in the middle column) with X given by Eq. (25a). Conformally flat solutions introduced in Sec. VII are denoted by “CF.”
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Classification Form of H Previous occurrences

scheme (see Tables IV and VII) in the literature

ChWy(r3)(UD) As ChWy(r3) None

ChMcV (r2,r2) (UD) As ChMcV (r2,r2) B. Mashhoon and H. Partovi®
ChWy(r2,,2) (UD) As ChWy(r2,r2) None

ChMcV(2) (UD) As ChMcV (r2) B. Mashhoon and H. Partovi®
ChWy(r2)(UD) As ChWy(r2) None

ChWy(r2)I(UD) As ChWy(r2)}1 None

ChWy(r2)15, (UD) As ChWy(r2)16 None

ChWy(r2)16_(UD) As ChWy (r2)16 _ None

NMcV(r2)(UD) As NMcV(r2) H. Knutsen®

NWy(r2)(UD) As NWy(r2) None

CF(L,T) As. Eq. (48) H. Bondi,® 1. H. Thompson and G. J. Whitrow,* H. Nariai and K. Tomita®
CF(T) As above with L = const W. B. Bonnor and M. C. Faulkes’
CF(FRW) As above with kc§L = — exp[2T /cj ] The FRW-type solutons®

*See Ref. 16. ¢See Ref. 42.

°See Ref. 39. See Ref. 43.

°See Ref. 40. & See Ref. 44.

9See. Ref. 41.



equivalent to Q having multiple roots. From the form of Q
givenin Eq. (21b), the necessary and sufficient condition for
Q@ = 0to have multiple roots is the vanishing of the discrimi-
nant®®:

D=LI[1*+ ALl —3L1*] =0,
with
I,=Le* + A%*/12, I,=2A€*/3 —3u%/4.

From Eq. (43) itis clear that Q has trivial multiple roots at
W = 0 corresponding to L = 0, that is, to McVittie-type so-
lutions. If L #0, finding multiple roots of Q is not so simple,
and this fact explains why Wyman-type solutions have been
barely discussed in the literature (see Tables III-VIII). In
this case, the condition for the occurrence of a multiple root
at W #£0 can be expressed as a quadratic equation on L from
the term in brackets in Eq. (43), therefore L will be a con-
stant different from zero in this case. If € =0 but £ #0 in
(43), the same result holds: multiple roots in the cubic Q are
incompatible withdL /dt #0. However, in neutral solutions,
if # =0 and A and H satisfy restrictions (39), then it is
possible to have solutions expressible in terms of elementary
functions and keeping both T and L as functions of time.
These uniform density solutions are also conformally flat
and will be considered in the next section.

If the quartic Q given by (21b) has multiple roots, it can
be expressed as one of the following forms according to the
number of repeated roots (r):

(43)

Qiy =€W?, (44a)
Qs =€[W—-4P[W—-B], (44b)
Qi =€[W—AV[W—-B], (44c)
Quy =E[W—AV W2+ 2wW (], (44d)

For each form given above, Eq. (24a) can be integrated and
inverted yielding the following expressions analogous to
(28):

Quay: H=€h T+ X]|, (45a)
(A4 —B)X(T+X)?—4
: H= s 45b
Qi |4€*(4 — B)*(T + X)? — 4B | (450)
2 B —Aexp(+ (4 —B)(T+X))
Q(r2):
Hep l6— V|28 (2€]8|VH(T+ X)) — A+ v
AL — V'S (2€|6|VHT+ X)) +vA+ ¢
(45d)
_ EA+MHT+HX)’ 1 _
A[EA+WNWH(T+X*+1]+2v ’
(45¢)
where

S§=A4A7+2vAd + ¢,

S=sin if §<0, ¢ —1+*<0,

S=sinh if §>0, {—+*>0.
Different particular solutions arise for different forms of 4
and X given by Egs. (25). These solutions are classified in
Table VIII, which provides the values of the repeated roots 4
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and B, and the parameters v and { appearing in Egs. (45). A
classification scheme has been introduced in Table VIII, so
that charged Wyman-type and charged McVittie-type solu-
tions are labeled as “ChWy(rN)I5, (XN,)” and
“ChMcV{(rN,) (XN,),” where the number N, denotes N,
repeated roots in Egs. (44), the number N, corresponds to
the number labeling X in Egs. (25), the symbol 7 in some
Wyman-type solutions indicates that I, and I, in Egs. (43)
are different from zero, while “§ | ”” indicates that the quan-
tity defined as & (positive or negative) in Eqs. (45d) and
(45e) can take its most general value. In order to compare
these solutions with solutions previously discussed in the
literature, a simplified form of H is provided in Table II.
This form of H is obtained in each case by inserting the corre-
sponding values of the roots 4 and B and the parameters ¢, u,
A, L,v,{, and & from Table VI into Eqgs. (45). Forms of H
analogous to those of Eqgs. (30) can also be obtained by
choosing N(?) as in Eq. (29).

Previous occurrences of particular shear-free charged
solutions in the literature are listed in Table IV roughly fol-
lowing a chronological order. As most authors use ““isotrop-
ic” coordinates, in order to facilitate the comparison of the
solutions studied by these authors with those presented in
Tables I11 and VIII, the transformation relating these co-
ordinates with the ones used in this paper is given in Appen-
dix B. Since the metric coefficient g,, in (11) can be obtained
from H, it will be enough to compare the forms of H in each
case with those presented in Table VIII. All authors listed in
Table IV have made a choice of time coordinate by demand-
ing ® (1) to be proportional to dT /dt, other possible choices
of time coordinate will be discussed in Part I1. From Tables
I11, IV, and VIII, one can appreciate the fact that most par-
ticular solutions previously found in the literature are
McVittie-type solutions in which Q has multiple roots at
W = 0. Most Wyman-type solutions classified in Tables II
and III are new, and some of these new solutions, like

ChWy(r2,r2) (X 1), ChWy(r2,r2)(X2),

ChWy(r2,,2)(X3), ChWy(r2)(X1),
and

ChWy(r2)(X2),

have mathematically complicated forms and it is unlikely
that they will be studied in detail. However, the other new
solutions,

ChMcV(r2) (X 3),
ChWy(r2)I6 (X 1),

ChWy(#2)I(X 4),
ChWy(r2)16, (X 2),

and
ChWy(r2)I5 (X 3),

are more appealing and the examination of their physical
and geometric properties might be worthwhile.

For neutral solutions with ¢ 0, the cubic Q having
multiple roots can be cast in any of the following forms anal-
ogous to Eqgs. (44):

Qi = |2#]W3 > (46a)
Qoy = [W—A41[{—2uW], (46b)
Roberto A. Sussman 1131
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TABLE VIII. This table provides the values of all unspecified parameters appearing in Eqgs. (44) and (45).

The classification scheme displayed in the last column is explained in the text. See Sec. VL

Q. , Parametersin (44)

Parameters in (21b)

Range of W (see Fig. 1)

Classification scheme

Qi pu=A=L=0 type (iv) W0 ChMcV(r4)(X 4)
ChMcV(rd) (X 5)
i h X4
A=0, B:ﬁ‘_ uA0, A=L=0. type({) n>0, Ws2u/é, ChMcV(r3)(X 4)
e type (il) p<0, O<W<2u/e. ChMcV(r3)(X5)
Q) ] ChWy(r3)(X 1)
o _ _ .k 2 9 . yir
A==, B= — L<0, A=2J3|L === 50. t W 3u/4€
1€ ae < Bl =35> ype (0 W>3u/ ChWy(r3)(X2)
type (i)  p>0, Wsu/e,
o u . ChMcV (r2,r2)(X 1)
wald=0, B=E. L=0, A=% 50 type (i 0<Wep/é,
Qs = e ype (11) <W<p/ ChMeV (r2,2) (X 1)
type (iv) u<0, W>0.
2 ;
A=Y a4 0cL=2 L _0 aso. type (i) W JA/2e, ChWy(r2,r2)(X 1)
e 4 type (il) 0« WA/ e. ChWy(r2,2)(X2)
A:ﬂ, B= —4 As above with: A <O. type (iv) W>0 ChWy(r2,r2)(X3)
V2e
O HW=0 v= —%, §=;Az-. L=0, pg?—Aé<0, A>O. type (i) wu>0, W>W,, ChMcV(r2)(X 1)
type (ii) O<W<W_, ChMcV(r2)(X2)
W, =pe ?[1+ vy’ — A€,
type (iv) u <0, W>O0.
L=0, p'—Ae>0, A<O. type (iv) W>0 ChMcV(r2)(X 3)
A2 9u? type (i) >0, W>9AW,/2u, ChWy(2) (X 1)
=1, = =2 . A= o,
4 #£0, 1,=1,=0, 0>L TR ge2 W,=1+v1—16/2187,
A:EA—, v= —E, b= — 5- 5§=0. type (iv) u<0, W>O0. ChWy(r2)(X2)
3y 2 27u
27u° type (i) u>0, W>3u/2e,
—0, 0<L==I1 . ChWy(r2)I(X 4
A #0, 1,1,#0, A=0, 0< T6c° type (ii) 0< W<3u/2€, y(r2)I(X4)
1 12Le* + A? ] 3u A A? type (iv) u<0, W>0,
A=—|A-28 L2 T — |, =L yv=_, {="—, 5>0. ChWy(r2)I(X5)
3;;[ BAE — 947 22 VT3 T 5= 9u2/2€", y
,UZ AZ
va—%, 6=550 0<L=—, type (i) W>vA/2€, ChWy(r2)I(X 1)
, 4w, A JA e type (i) 0< W< V/A/2%,
—aqr M8 va _A, (=442 550 ChWy(r2)I(X2
£=34 €2A+€2, A "V 4, ¢ > 5= 3A/462 y(r2)1(X2)
550 type (i) A>0. W— <O<W<W, W>W,, ChWy(r2)I5, (X 1)
§=A 4+ 2vA+¢. W_<W, <0, W>A,
A<0. W >W_>0, W>W,_, ChWy(r2)16,.(X2)
type (ii) 4>0, W_<W, <0, 0<W<A,
A<0, W, >W_>0, O0<W<W_,
type (iiil) O<W_<W, <A, W_<W<W,, ChWy(12)15, (X 3)
W, =—v+vvV—¢,
type (i) A>0, W>A4,
5<0 type (ii) O0<W<A, As above with § _
type (iv) A<0, W>0.




where, as for the charged case, Eq. (24a) can be integrated

and inverted yielding
Qusy: H=(ph/2)[T+X]1?, (47a)

uC?(|& —2ud '’ [T+X])

:H=h )
Qe AL — AAS?(|E — 2ud |'2[T+X1)
(47b)
where
S=sin, C=cos, A= —1, if 2ud<{,

S=sinh, C=cosh, A=1, if 2ud>¢,

and, as with the case of charged solutions, different particu-
lar solutions correspond to different choices of 2 and X in
Eqgs. (25). Particular solutions of (32) are classified and
identified in Tables V and VI, which are analogous to Tables
II1, IV, and VIII. All these solutions have already been dis-
covered and classified by Wyman,'” McVittie,'® and (some
of them) in Kramer ez al.'> Unlike the charged case, all Wy-
man-type neutral solutions expressible by elementary func-
tions have mathematically unappealing forms and it is prob-
ably not worthwhile studying them in detail. A classification
scheme analogous to that used in Tables III and VIII has
been introduced in Tables V and VI.

Some of the expressions presented in (45) and (47) con-
tain uniform density solutions expressible in terms of ele-
mentary functions, this happens when 4 and X satisfy (39)
and (42). The form of H for these solutions can be obtained
by specializing # and X in (45) and (47) into (39) and (42).
All types of uniform density solutions expressible in terms of
elementary functions are classified and identified in Table
II1. A classification scheme analogous to those used in Ta-
bles IIT-VI and VIII has been introduced for Table VII, so
that solutions with €0 are denoted as “Ch...(UD)”, those
with € = 0 but £5#0 as “N...(UD)”.

All solutions expressible as elementary functions reduce
to static solutions if 7°(¢) becomes a constant. However,
these static limits will be discussed in Part II.

Vil. CONFORMALLY FLAT SOLUTIONS

If € = u = 0O, the functions j and E in (22a) and (22b)
vanish and so does the Weyl tensor, as is shown in Appendix
A [see Egs. (A4), (A5), and (A6)]. Thus solutions with
these two parameters set to zero are the only conformally
flat, spherically symmetric, nonstatic, shear-free solutions.
These solutions have also homogeneous density and their
metric coefficient H is obtained from integrating (24a) with
Q restricted by € = u = 0. However, conditions (38) and
(39) must be satisfied so that p = p(¢) is given by (41) and
Eq. (18) with € = ¢ = 0 holds. These solutions are the only
particular solutions of the ChKQ class expressible in terms
of elementary functions which have two arbitrary functions
of time. The form of H for these solutions will be

H=2eT%/[pe?T’%" — (2 —ky)c,'L ] . (48)

Conformally flat solutions are also classified in Table VII
where they are denoted as “CF.” The Friedman-Robert-
son—-Walker (FRW) family of solutions belongs to this class
(see Table VII).

1133 J. Math. Phys., Vol. 28, No. 5, May 1987

ACKNOWLEDGMENTS

I would like to thank Dr. M. A. H. MacCallum for en-
couragement and illuminating discussion. I would also like
to thank Dr. B. Mashhoon for his hospitality and useful sug-
gestions while I visited him at Koln.

I am indebted to the National University of Mexico
(UNAM) for giving me financial support.

APPENDIX A: FIELD EQUATIONS AND CERTAIN
GEOMETRIC QUANTITIES ASSOCIATED WITH THE
METRIC TENSOR GIVEN BY EQ. (11)

Having already used the equation G, = 0 (Ref. 2) for
the metric (1) and stress-energy tensor (8) in order to ob-
tain Eq. (9), the remaining independent field equations for
(8) and (11) are

G, =8~T',,

E? e 1 [(H')Z 4F'H'
— 87y — — == 4 = =) =L
s (fH)* 3 +H2 H fH
n " 12
_2H" 4 f —1}, (AD)
H F2
G',=8xT’,,
8ap __E (H/H)™' = (0%/9) +—2
(Hy* at 3
L[ _2H (H' JL)
+H2[ H (H+f
2 _ N2
+ ”;’12) 41 f(zf) ] (A2)
G =G* =8rT% =8rT*,,
E? H)ﬂa(@ﬁ) @?
8 - (&) 2(=Z)\, =2
Ky (H a\o /)13
+L[£(£H_'_fi)
H*|H\H [
132 ” 'y
_HY_frH (A3)

H? f H
The conformal scalar invariant ¥ ,, is found to satisfy
the simple relation

RW, = —J+EYR, (A4)
Jy)y=if’, (A5)

where R = fH by Eq. (6), and j(p) is the same function
appearing in Eq. (18). This simple relation was discovered
by Glass? for the neutral case (E = 0) of Eq. (18). For the
charged case, see Mashhoon and Partovi.'® The rest of the
null tetrad components of the Weyl tensor are zero, which
confirms the known fact'>'* that these solutions have Petrov
types D or (if ¥,, = 0) type O.

The nonzero components of the Weyl tensor in the coor-
dinate system (1,7,8, ¢) can be given in terms of the invariant
¥, as

Cor = 060 — ¥, » (A6)
Coor0 = Crzbrdz = - Ct616 = - Ct¢t¢ = \P(z) ’
so that the necessary condition for solutions characterized
by the metric (11) to be conformally flat (i.e., the vanishing
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of the Weyl tensor) is given by W ,, = 0. There is a confor-
mally flat subclass® of neutral nonstatic solutions contained
in the ChkQ class. These conformally flat solutions are pre-
sented in Sec. VII, they will be labeled as “CF”’ in the classifi-
cation scheme [see Eq. (46) and Table VII]. From
(A4),(AS), conformally flat charged ChKQ solutions must
be static.

Using Eq. (15), the field equations given by (Al),
(A2), and (A3) can be simplified by eliminating second
derivatives of the form H ”. For certain calculations, it is
useful to transform (11) into a metric where y and ¥, as
defined by Egs. (16), replace » and H, respectively. The ad-
vantage of using this representation is that the elimination of
second derivatives like 3 2Y /dy* is easier using Eq. (18) than
Eq. (15). In particular, Eq. (A1) can be brought to the form

S R
3T TRl TR TR (R)’
(A7)
where J is the same function appearing in (AS5). Differenti-
ating Eq. (A7) with respect to r, and again eliminating de-
rivatives like R ” with the help of Egs. (15) or (18), one
obtains

$ap'R’= —2J'+(E?)'/R. (A8)

Equations (A7) and (A8) will be needed in Sec. V as
solutions with uniform density are discussed. All quantities
calculated in this appendix have been obtained using the al-
gebraic computing language SHEEP.*

APPENDIX B: NONEQUIVALENCE OF SOLUTIONS
WITH DIFFERENT VALUES OF £ IN EQS. (14) AND (17)

The form of the metric (11) with f(7) given by Eq. (14)
suggests a comparison with the FRW solutions in which H is
a function of time only (see Table VIII). In this particular
case, the constant £ = 0, + 1 indicates the sign of the (con-
stant) curvature of surfaces of constant proper (cosmic)
time. For any solution (other than FRW) presented in the
tables and characterized by H(t,p) satisfying Eq. (15) [or
(18) 1, it is also desirable to find out whether the three differ-
ent values of £ (0, + 1) denote three different solutions. It is
shown in this appendix that this is actually the case, so that
each entry appearing in the tables is really a triplet of solu-
tions. The demonstration will be restricted to neutral solu-
tions excluding solutions with uniform density. The general-
ization to charged solutions is straightforward, and the case
of uniform density solutions (including the conformally flat
subclass) will be examined in Part II. The interpretation of
the different choices of & in terms of geometric properties of
the solutions is not as simple as with the FRW solutions, and
thus will also be left for Part II.

The problem of testing whether two metrics are equiva-
lent, in the sense that they correspond to the same space-time
manifold, is a nontrivial problem known in the literature as
the “equivalence problem.” Broadly speaking one can say
that two metrics g and g are equivalent if there is a nonsingu-
lar coordinate transformation x° = x?(X%°) relating them. In
practice it is rather difficult to guess if such a coordinate
transformation exists, and testing the equivalence of metrics
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in general requires elaborate mathematical techniques (see
Karlhede®®). Though there are no standard prescriptions,
one could proceed by assuming that the desired coordinate
transformation exists, and then testing the consistency (or
inconsistency) of a system of simultaneous equations of the
form

L(x*) =1,(x%),

Lx") =5L(z", (B1)

I,(x) = I,(3),

where I, are a set of suitable invariants. In general, one
would take the /, to be the components of the Riemann ten-
sor and its covariant derivatives in a canonical null tetrad.
However, in some cases it might be possible to find other
mathematically simpler invariants.

Fortunately, for the solutions under consideration in
this paper the equivalence of metrics with different & in Eqgs.
(14) and (17) is relatively easy to test. Because of spherical
symmetry and the mathematical simplification of the metric
coefficients, one can find simple invariant quantities which
can be defined without reference to any coordinate system.
With these quantities one can construct a system of equa-
tions similar to (B1), and thus reduce the test of equivalence
of metrics with different & to a test of consistency of such a
system. Consider the following quantities as the above men-
tioned invariants.

(i) Proper surface of two-spheres generated by the
world lines of comoving observers,

A(ty) =47R* =47 (fH)?.

(ii) Change of R = (A4 /4) 2 with respect to the prop-
er time of comoving observers,

dR _ N 1/2 dR _ 1

dr £ e T

(iii) The conformal scalar invariant ¥'* given by Eq.
(A5). The functions / and fare given by Egs. (17) and (23),

VY, = —u(/m)°/R>.

(iv) Matter-energy density p, the eigenvalue of the time-
like eigenvector of the momentum-energy tensor p given by
(A7) and (38).

Consider two metrics corresponding to the same slot in
the classification scheme (i.e., H is the same function of y,
the constants i, a, b, ¢ are equal) but with y corresponding to
two different values of k in Eqgs. (17). Call (¢,y) and (¢,7) the
coordinates characterizing each metric. Let us assume that
these metrics are equivalent, that is, there exists a nonsingu-
lar coordinate transformation of the type ¢ = #(z, 7) and
v =p(,p) such that the following system of simultaneous
equations holds:

6R

A(ty) =A(1y) = R(ty) =R(1,p), (B2)
R _dR _ o()R(ty) = BOHREP) (B3)
dr dr
T LAMRNY _ TADHROI®
Vv, =V = Al s B4
(2) 2) = R3(t,y) R3(t,}) ( )
$7mp(O,R, f;h) = 7p(O,R, f,h) . (BS)

Roberto A. Sussman 1134



The fu_nctions JS(y) and A( y) in (B4) are given by (17)
and (23), f( y) and A( ) are

R(P) = [ap* + 26§ + 172, (B6a)

A3 =152—-k»)"2, (B6b)
where the bar on top of k indicates that this constant is to
take any of the other two possible values it can have different
from the value of k without the bar. Thatis if « = 0, k can be
lor —1,ifk=1, k=0, — 1, etc.

If the system (B2) to (B35) is consistent, metrics with
different k in (14) and (17) are equivalent. If (B2), (B3),
and (B4) hold simultaneously, then one has

R=R, ®©=0, fa=sn. (B7)

From the third equation in (B7), Egs. (17), (23), and (B6),
it follows that

Y-k -k

ay*+2by+c  aF+ 2 +c’
which relates y with y. Inserting (B7) in (B5) with p and p
written explicitly with the help of (38) and (A7), one has

aly =P (M?=ky—ky, (B9)
which can be shown to be in contradiction with (B8) unless
k = kand y = . Therefore the metrics corresponding to dif-
ferent values of & are not equivalent.

This demonstration can be extended to include charged
solutions by adding to the list of invariants the Maxwell field
invariant F,, F*® and proceeding in exactly the same man-
ner. This equivalence of metrics for uniform density solu-
tions will be considered in Part IL.

(B8)

APPENDIX C: ISOTROPIC COORDINATES

Most authors dealing with particular shear-free solu-
tions use spatial comoving coordinates with the radial coor-
dinate x defined in such a way that the metric of surfaces of
constant ¢ is given by

dl? = H*(x,t) [dx* + x* dQ?] . (Cl)
These coordinates are called “isotropic” and relate to the

coordinates introduced in Eqgs. (14) through the following
transformation’®2;

7, k=0
x(r) =1{2tan(r/2), k=1, (C2)
2tanh(r/2), k= —1.

In order to compare the forms of H given in Tables III and
VI with those obtained by authors using isotropic coordi-
nates, the following relations are helpful:

H(rt) = (1 + kx¥/8&)H(x,t) , (C3)
y(x) =x%/2(1 + kx*/4) 7", (C4)
flx)=x(1 4+ kx¥/4)" ', (C5)

APPENDIX D: SOME SIMPLE SOLUTIONS NOT
BELONGING TO THE ChKQ CLASS

The ChKQ solutions presented in Sec. IV follow from
integrating Eq. (18) under the restrictions given by Egs.
(22). The simplest charged solutions which do not satisfy
these restrictions are those discovered by Vaidya and Shah*
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and further examined by Banerjee, Chakravorty, and Dutta-
choudhury®! (see Table IV). For these solutions, H has the
form

H=[1/(ay+ BT +u(»], (D)

where o and S are arbitrary constants and T'(¢) is an arbi-
trary function. The function u( y) is related to j( y) and
E(y) by Eq. (18). Inserting (D1) in Eq. (18), remember-
ing that Y=H ~, one obtains

du

3(») du

Tl =20~ —(ay+ B) —, (D2)
f? dy dy’

D) oy sy (B (D3)
7° Y dy)

Some of the solutions classified in Tables III and VIII
are particular cases of the Vaidya—Shah family of solutions.
If @, B, and u( y) are chosen so that (D1) becomes equal to
H for solutions ChMcV(r4)(X4), ChMcV(r4)(X5),
ChMcV(r2,/22)(X 1), and ChMcV(r2,r2)(X2) of Table
II1, thenj( y) and E( y) defined by Egs. (D2) and (D3) will
have the forms specified by Egs. (22). However, H given by
(D1) satisfies Eq. (18) for any function u( y) related to
Jj(y)and E( p) by (D2) and (D3), therefore one can choose
in general functions #( y) for which j( y) and E( y) will be
different from (22). An example of a charged solution be-
longing to the Vaidya-Shah class but not contained in the
class presented in Sec. IV is the solution discovered by Mash-
hoon and Partovi.® This solution [their Eq. (115)] satisfies
a barotropic equation of state, it has the form (D1) with
a =0, 3 = const and, with obvious changes of notation, the
function u( y) satisfies

du _ 3 sinh2r—2(r + po)

dr 4 sinh 2r ’
where p, is a constant and r is related to y by Egs. (14c) and
(16b).

It is quite likely that neutral solutions that do not satisfy
the restriction (22a) will have charged versions, though it is
also likely that charged shear-free solutions without neutral
counterparts exist. Obtaining these types of solutions can be
a topic of further research.

For neutral solutions, Wyman,'® McVittie,'® Ste-
phani,? and Srivastava®' have discussed the conditions to be
imposed on j( y) in order to be able to integrate Eq. (18)
with E = 0. Solutions not belonging to the NKQ class pre-
sented here can be found in their papers and in references
quoted therein. In particular, for some of these solutions the
variable coefficient in (18) takes the following odd form:

Y=+ n=12, (D5)

Stabell and Knutsen*’ and Knutsen*®*° seem to have exam-
ined some solutions corresponding to (D35). The latter au-
thor has recently studied® simple solutions which have the
form

H=u""[(1/n)T(t) + au'*"}?, (D6)
where a and 7 are arbitrary constants. This solution reduces

to NMcV(r3) (X 4) (see Table VII) if n = 1. For n##1, it
seems to correspond toj( y) different from (22a) and (D35).

(D4)
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Linear independence of renormalization counterterms in curved space-times
of arbitrary dimensionality
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The counterterms in the Lagrangian of a renormalizable quantum field theory that involve the
Riemann curvature tensor are considered. It is proved that for six or fewer dimensions the
counterterms not containing derivatives of the Riemann tensor are linearly independent. It is
shown that there appears to be a maximum space-time dimension for which identities can exist
among invariants involving the product of #» Riemann tensors (without derivatives acting on
them.) Space-times that would require these products as counterterms for a renormalizable
theory have a dimensionality which is one higher than this maximum dimension. This makes it
plausible that the required set of counterterms not involving derivatives of the Riemann tensor
is linearly independent in arbitrary dimensions. In the Appendix, a relation cubic in the Weyl

tensor, which relates invariants cubic in the Riemann tensor in five dimensions, is proved.

I. INTRODUCTION

It is well known that in a three-dimensional space-time,
the Weyl curvature tensor vanishes, which implies that'

RA,uVK = glvR;u( - g/IKRyv - g/.zVRAK + g‘uKR/l‘u

—%(gﬂ.vg,uk _glxg;.w )R (11)
This yields the following relation quadratic in the Riemann
tensor:

R**R,,. —4R"R, +R>=0. (1.2)

In a four-dimensional curved space-time background,
one requires, among the counterterms in the Lagrangian of a
renormalizable quantum field theory, terms proportional to
R**R,,...R*R,,, and R*.If a linear relation like Eq.
(1.2) were to hold in four dimensions, then the set of coun-
terterms would be reducible. (Of course, we assume that the
symmetries of the Riemann tensor have already been used to
reduce the set of counterterms as much as possible.) Our aim
in this paper is to assist in the determination of a minimal set
of counterterms in arbitrary dimensions by precluding linear
relations among invariants formed from products of Rie-
mann tensors with no derivatives. We will not be concerned
with linear relations among such invariants which hold only
to within a total derivative. An example of such a relation is
the Gauss—Bonnet theorem, which implies that the left-hand
side of Eq. (1.2) is a total derivative in four dimensions.

In six dimensions, the counterterms not containing de-
rivatives of the Riemann tensor are cubic in that tensor, >~
and one must consider the possibility of linear relations ex-
isting among such terms. Indeed, such relations among cu-
bic invariants do exist in four® and in five dimensions.® In the
Appendix, we prove a relation cubic in the Weyl tensor (and
hence in the Riemann tensor) which holds in five dimen-
sions. We will prove below that no such identities exist in six
or more dimensions. We will also present arguments sug-
gesting that there is no linear relation among the invariants
of order » in the Riemann tensor (without derivatives acting
on it) in a space-time of dimension 2 or greater. In a space-

») Present address: Department of Physics, University of Southampton,
Southampton SO9 SNH, England.
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time of dimension 2n, the counterterms for a renormalizable
theory which do not involve derivatives of the Riemann ten-
sor are of order # in that tensor. Hence one cannot eliminate
such a counterterm by means of a linear combination of simi-
lar terms of order n. (Counterterms of the type under consi-
deration here do not appear in odd-dimensional space-
times.) By way of introduction, we will first outline a proof
that no linear relation among R ****R, ..., R**R,,,, and R’
exists in four dimensions.

Il. QUADRATIC INVARIANTS IN FOUR DIMENSIONS

LetJ, =R*"R,,..,J=R*R,,, and J; =R . Sup-
pose a relation exists for some given dimension d > 3 of the
form

3

> cd; =0.

i=1
Consider a d-dimensional space-time Q,, in a coordinate
system in which it is manifestly the direct product of a p-
dimensional de Sitter space-time and a (d — p)-dimensional
flat Euclidean space. The curvature tensor is then given by

R _ [K(gaygﬁé — 8258py )s aaﬁﬁ’ﬁ =0,1,.p—~1,
aprs 0, otherwise.

2.1

(2.2)
It is evident that the invariants are the same as for a p-
dimensional de Sitter space

Ji=2p(p—1), L=pp—-13% JL=p(p-—-1>%
(2.3)

Then Eq. (2.1) is

pp~Dlep® + (c; —e)p+2c,— ;1 =0 (2.4)

By assumption, Eq. (2.1) holds for any space-time in d
dimensions. In particular, Eq. (2.1) must hold for all @,
with 1<p<d. Hence Eq. (2.4) must have roots p = 1,2,...,d.
Clearly, p = O is also a root. Therefore Eq. (2.4) has at least
(d + 1) roots. Thus, if d > 3, then Eq. (2.4) is a polynomial
of degree 4 with more than four roots. Hence it must be
trivial, which implies that

(2.5)

Therefore no nontrivial relation of the form (2.1) can exist
in a dimension d greater than 3.

ci,=¢,=c;=0.
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lil. CUBIC INVARIANTS IN SIX DIMENSIONS

The symmetries of R ,5,s imply that there are eight inde-
pendent invariants cubic in the Riemann tensor and not in-
volving covariant derivatives.” In this section, we will prove
in six or more dimensions that no linear combination of these
invariants is zero.

The eight invariants are

A
Il = Ra/;’yaR “ yfR/IBTa’

A
12 = RaByURyo TRllraﬁ’

ILi=R*.R,3R™", I,=RR,,R"", (3.1)
I,=R“R™R.5,, I,=R,”R;'R°,
I,=RR,R*, I;,=R"
Suppose that a relation of the form
8
bl =0 (3.2)

i=1
exists in a dimension d greater than or equal to 6. For a
space-time @, , defined in Sec. II, the invariants have the
values

ILi=pp—-1(p—-2), L=4p(p-1)

Li=2(p— 1%, I,=2p— 1), (33)
Is=pp—1° I,=pp—17°

L=pp—-1° L=p@{E-17°

The relation in Eq. (3.2) thus becomes an equation of degree
6 in p, namely
p(p— 1){bgp4 + b7p3 + (2b, + bs + bs)pz

+ (b, + 2by; — 2b, — 2bs — 2bg)p — 2b,

+ 4b, — 2b, + bs + by} = 0. (3.4)

By assumption Eq. (3.2) holds for any space-time in d
dimensions, in particular for each Q,, with 1<p<d. Hence
Eq. (3.4) must have roots p = 1,2,...,d. Moreover we see by
inspection that p = 0 is also a root of Eq. (3.4). Hence Eq.
(3.4) has at least (d + 1) roots. Thusif d > 5 then Eq. (3.4)
is a polynomial equation of degree 6 with more than six
roots, and hence must be trivial. We then have

b, =by=0, (3.5a)
2b, + bs 4+ bg =0, (3.5b)
by + 2by —2b, — 2bs — 2bs =0, (3.5¢)
—2b,+ 4b, — 2b;y + bs + bg = 0. (3.5d)

By considering further specific space-times we may
show that all the #, must vanish. First consider a space-time
with metric

ds*=dt? — (t¥2dx} + 1% dx}
+t73dx: 4 dx2 4 - +dx2). (3.6)

This is the direct product of a Kasner space-time in four
dimensions with a (d — 4)-dimensional Euclidean space-
time. We find for this space-time

R.s =0, (3.7)

I = —18(1/t%, L= —35(1/t%. (3.8)
Equation (3.7) implies that I, =1, = --- =1, =0, and
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hence on substituting (3.8) into (3.2) we find
b, = —2b,. (3.9)
Equations (3.5a)—(3.5d) together with (3.9) then yield
b,=b6,=0, (3.10)
by+b,=0. (3.11)
Next we consider a space-time with metric
ds? =dt® — t(dx} +dx}) — (dx5 + - +dx3).
(3.12)

We find after some calculation that for this space-time (3.2)
becomes

by + 3b, + by =0. (3.13)
From (3.5b), (3.11), and (3.13) we obtain
bs=0. (3.14)

Finally we consider a space-time with metric

ds? =dt? — Hdx? +dx} +dxl) — (dx2 + - +dx%).
(3.15)

We find that in view of the relations already found between
the b;, this space-time will only satisfy (3.2) provided

by =b, = by =0. (3.16)

To sum up, if the relation (3.2) is to be valid for a gen-
eral space-time in d dimensions with d > 5, we must have

b, =0, i=1,.,8. (3.17)

In other words there is no nontrivial relationship among
1,,I,,....I; in more than five dimensions.

IV. CONCLUSIONS

We have proved that a relation of the form (2.1) does
not exist for a dimension greater than or equal to 4, and a
relation of the form (3.2) does not exist for a dimension
greater than or equal to 6.

Although these proofs have dealt with invariants qua-
dratic and cubic in the Riemann tensor, it seems clear that
one could construct a similar proof for invariants of any
order r in the Riemann tensor (without derivatives), show-
ing that relationships among them would only be possible up
to some maximum dimension of space-time. In fact, assum-
ing such a proof exists, we can immediately determine this
maximum dimension. It is clear that upon substitution of the
curvature tensor for @, , into the invariants of order » in the
Riemann tensor, the highest power of p which occurs in the
equation analogous to (3.4) is p** (from the invariant R ").
One of the roots of that equation is guaranteed to be p = 0
because each term which contributes to an invariant, after
substituting Eq. (2.2), contains at least one factor of p given
by a contraction over the metric of the p-dimensional maxi-
mally symmetric subspace in Q,,. Since each Q,, with
1<p<d is a particular example of a d-dimensional space-
time, the equation of order 2» in p must have the d + 1 roots
p=0,1,...,d. Therefore, if d + 1>2n, then all the coeffi-
cients of the polynomial must be zero. It seems likely that
one can then prove, as in Sec. I11, that there can be no nontri-
vial linear relationship among the invariants of order » in the
Riemann tensor. Therefore it is plausible that the maximum
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dimension of space-times in which linear relations can exist
among invariants of order » in the Riemann tensor (without
derivatives) is given by

oy =2n— 1. (4.1)

For a renormalizable quantum field theory in a curved
space-time of 2n dimensions, the counterterms which de-
pend only on the Riemann tensor (and not its derivatives)
must be of order » in that tensor, so that the action remains
dimensionless. From Eq. (4.1), these counterterms are lin-
early independent. Although our rigorous proof extends
only up to six dimensions, if as we have argued Eq. (4.1) is
valid for all n, then these counterterms are always linearly
independent.

Our conclusions concerning the linear independence of
the counterterms not containing derivatives of the Riemann
tensor should be useful in arriving at the minimal set of coun-
terterms for a quantum theory in a curved space-time of
arbitrary dimension.
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APPENDIX: INVARIANT CUBIC RELATION IN FIVE
DIMENSIONS

In this Appendix, we prove that the relation
Cos*C*, CP, =1C,57C, " C,, (Al)

holds in space-times of dimension 5 or less, where C%,s
denotes the Weyl tensor appropriate to the given dimension.
In Ref. 5, Xu gives a proof of this relation for four-dimen-
sional space-times, using spinor methods special to four di-
mensions. Here, we give a proof valid in five (or fewer) di-
mensions.

In five or less dimensions, one clearly has the identity

C[aBKACV(Sy.VCﬂ?]ar = 0! (A2)
where [ -+ ] denotes antisymmetrization with respect to the
six contravariant indices only. Contracting between the low-

er and upper indices, keeping track of the various permuta-
tions, and using the tracelessness of the Weyl tensor, yields

C#CP Cy=4CF C", Cps. (A3)

(This can also be obtained by realizing that only two essen-
tially different contractions appear, and finding the numeri-
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cal constant, 4, by evaluating each side of the relation for a
simple metric.) This already gives a relation cubic in the
Riemann tensor valid in five or less dimensions. By the same
method, one can clearly obtain similar relations among con-
tracted products of # Riemann tensors valid in 2n — 1 or less
dimensions.

To show that Eq. (A1) is equivalent to Eq. (A3), we
show that

C "”‘én C,”.C g =2C% C 7‘3&" Cs. (A4)
First use the cyclic identity
“avs = — C%py — C%sp, (A5)

on the last tensor in the product on the left side of Eq. (A6),
to obtain
C aB&] Ca 7/66 Ce" = - C EnyB C Ban& C éa yf

+C¥, .C7, Cs. (A6)
Then use the cyclic identity on all three Weyl tensors of that
same product, obtaining a sum of eight terms cubic in that
tensor. After a long calculation using the symmetry proper-
ties of the Weyl tensor (including the cyclic identity), one
finds that the eight terms can be reduced to three:

C aﬁén Ca 765 C E",VB =3C EnYB Cﬂané C 60! ye
+C "‘[’VE C V‘San C s
+ C"ﬁyéC”‘se,?C“’aﬁ. (A7)
Aswe have already proved Eq. (A3), we can write this in the
form
C"B&7 c,”.C e =3C 6’77,,,C”“1775 Cce.7.
+ 5C“B1,€C”5,,,,Cf"ﬁ5. (A8)
From Egs. (A6) and (A8), one immediately obtains Eq.
(A4). The latter, together with Eq. (A3), implies that
C aB577 Ca Y&e C Eﬂy/} — %C 01/37/‘s C 7697 C E”aﬁ , (A9 )

which is equivalent to Eq. (A1), as was to be proved. In Ref.
6, we give explicitly the relation involving the Riemann ten-
sor that this yields in five dimensions.

B

'S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), p. 144.
’D. J. Toms, Phys. Rev D 26, 2713 (1982).

*J. Kodaira, Phys. Rev. D 33, 2882 (1986).

*I. Jack, Nucl. Phys. B 274, 139 (1986).

*D. Xu, Phys. Rev. D 35, 769 (1987).

‘L. Jack and L. Parker, Phys. Rev. D 35, 771 (1987).

"P. B. Gilkey, J. Differential Geom. 10, 601 (1975); Compositio Math. 38,
201 (1979).

|. Jack and L. Parker 1139



The nonlinear Boltzmann equation with partially absorbing boundary
conditions. Global existence and uniqueness results

G. Toscani

Dipartimento di Matematica, Universitd di Ferrara, 44100 Ferrara, Italy

V. Protopopescu®

Istituto di Matematica Applicata “°G. Sansone,” Universitd di Firenze-50139 Firenze, Italy

(Received 13 June 1986; accepted for publication 31 December 1986)

The method applied by Bellomo and Toscani [J. Math. Phys. 26, 334 (1985) ] for the
Boltzmann equation in an infinite medium to establish global results for bounded media with
partially absorbing boundary conditions is generalized. The method does not require that the
equilibrium solution be the vacuum state and, accordingly, does not rely on positivity/
monotonicity arguments. The growth produced by the nonlinearity is compensated by the
combined effect of streaming and (partial) absorption (leakage) at the boundary.

L. INTRODUCTION

The nonlinear Boltzmann equation describes the evolu-
tion of a moderately dense gas whose state is supposed to be
completely described by the one-particle distribution func-
tion f= f(x,v,t) depending on position xeQ2 CR>, velocity
veR?, and time 7€[0,T). In the absence of an external field
the nonlinear Boltzmann equation reads

%+v-VJ=J(ﬁf). (D

The flow (streaming) term, v-V_f, describes the change
in the distribution caused by free translational movement
between collisions, while the nonlinear operator .J accounts
for changes produced by two-particle collisions.

For interparticle potentials with cutoff,* J can be actu-
ally separated into a difference of two terms, the gain and
loss operators, respectively:

JALL)=Q(LS)—/R(S), (2)
T/ 2 297
Q(f8) (x,v,1) =J dwf do | deB(6q)
R? (0] 0
XAx,V,0)g(x,w,t), (3)

/2 2T
R(f)(x,v,0) =j dwf d@f de B(0,q)f(x,w,t) . (4)
R* (4] 0

In the expressions above, (v,w) are the precollisional
velocities, (v',w’) are the postcollisional velocities, and the
angles € and 6 are, respectively, the polar and azimuthal
angles of v’ in a spherical coordinate system with z axis in the
direction of q = w — v. Namely,

vV=v+ (nq)n, w=w-— (nq)n, (5)

where n is a vector in the plane of the collision which bisects
the angle formed by v — w and w' — v’. Taking into account
the definition of 6, it follows that n-q = ¢ cos €. The collision
kernel B(8,q) is determined by the interparticle potential; in
what follows, we shall suppose that B satisfies the inequali-
tyl:
B(6,9)

sin & cos 8

<F1td, ocscr. (6)
q

) Present address: Engineering Physics and Mathematics Division, Oak
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Condition (6) is fulfilled for both soft and hard interactions
including the hard sphere model; in the latter case, § = 0.
Supplemented with an initial (or initial and boundary) con-
dition(s), the evolution equation (1) generates an initial-
value (or initial-boundary value) problem to be solved—or,
at least, to be proven solvable—in a suitable functional set-
ting.

More than a hundred years after the proposal of the
nonlinear Boltzmann equation, the global unique solvability
question is still unanswered in full generality.

For simplified versions (mainly homogeneous® and dis-
crete®® models) global existence proofs have been provided
in various settings at a satisfactory degree of generality.>®
Lately, global existence proofs for the full nonhomogeneous
Boltzmann equation have been essayed in the framework of
nonstandard analysis,*!° but their relevance for the classical
solutions is still under investigation.

The global results for the full equation in classical set-
tings could be obtained only under certain restrictive condi-
tions on the scattering kernel and/on the data. The state of
the art has been surveyed in Refs. 11 and 12. The major
difficulty in getting global existence results for the nonho-
mogeneous Boltzmann equation comes from the absence of
an adequate controlling mechanism for the possible growth
induced by the nonlinear gain term. Several compensating
effects have been proposed, such as mollification, '’ rarefac-
tion,'*'* discretization,*** or closeness to equilibrium. Be-
cause of the difference in techniques, in the last category we
distinguish between the equilibrium represented by the non-
trivial Maxwellian state and the vacuum (zero) state. In the
latter case, one takes essential advantage of positivity and
point estimates. In principle, the compensation of the non-
linear gain term must come from the loss term. Unfortunate-
ly, the presently available formalisms are not able to take
best advantage of the potential cancellation of the two terms,
since the minus sign is lost in the estimation of the norms. It
is not clear whether this is due to the lack of refinement of the
used techniques or to an intrinsic difficulty of the equation
itself. Some comments on this point can be found in Ref. 16.

Another possible compensation may arrive from the
flow term — v*V_f, whose net eventual effect (at least in an
infinite medium) is a local rarefaction of the gas.
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Theidea to use the flow term as a compensating term for
Q( f.f) seems to have been introduced by Tartar.!” Differ-
ent versions have been used lately by Illner and Shinbrot, '
Bellomo and Toscani,'® and Hamdache. %%

The aim of this paper is to extend these results to bound-
ed media. In this case, the compensation will arrive from the
combined effect of the free streaming and the leakage
through the surfaces.

Notwithstanding technical differences, all approaches
used so far have applied a unique strategy: (1) choose the
functional setting such that it be closed to linear operations
and to the quadratic operation described by Q( £, f); (2)
find a convenient norm estimate of the nonlinear term which
includes the possibly compensating factors; and (3) apply
the contraction principle and the fixed point theorems by
appropriately varying the compensating factors.

So far, the compensating factors have been essentially
the norm of the departure of the initial state from the equilib-
rium state. When the equilibrium state is the vacuum, this
norm depends on the initial state of rarefaction of the gas
(expressible in terms of density, mean free path, etc.) and on
the aggregating properties of the intermolecular potential.
In this paper two new parameters will control the norm and
its time evolution: the spatial dimension of the body and the
absorption coefficient at the boundary. The smallness condi-
tion on the initial data is propagated at subsequent times by
using the method of the characteristics. The results have
been announced in Ref. 21.

Il. STATEMENT OF THE PROBLEM AND NOTATION

We shall consider the initial-boundary value problem
for the nonlinear equation (1) in three situations.

Problem A: The spatial domain () is the parallelepiped
{2a,,2a,,2a,} and the boundary conditions are partially pe-
riodic:

f(iai’v’t) =af( iai:v’t), Ui%O,
=123, Oa<l. 7

The accommodation coefficient « is related to the absorptive
properties of the boundaries. The case a = 0 describes per-
fect absorption. The case @ = 1 (perfect periodicity) is not
included in the present treatment.

Problem B: The spatial domain () is the parallelepiped
{2a,,2a,,2a,} and the boundary conditions are partially
specularly reflecting:

S La,ve) =f( +a,v—2(vn)nt),
i=123 0Oka<l, (8)

where n is a generic notation for the exterior unit normal on
the corresponding faces of €.

Problem C: The spatial domain 2 is the semi-infinite
medium {x€R*/x, <0} and the boundary conditions are
partially or perfectly specularly reflecting:

f(0,v,2) = af (0,v — 2(v-e;)e; ), O<a<l, 9
where e, is the exterior unit normal on the plane x, = 0.
The free-streaming operator, — v-V,, with any of the

boundary conditions (7)—(9) in the corresponding geome-
tries generates a C, semigroup of positive contractions,
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U(t). (For recent proofs in general settings see Refs. 22—
24.)

The common feature of the problems A-C is that the
action of the semigroup U(#) can be explicitly computed for
each of them as follows:

M) (UMD (xY) = 5 alf(x +ja—vv), (10)
€z’

j= (jl’j27j3)€ZB’ (11)

ja=(2a,j,2a,j:2a,]5) , (12)

il =il + 2l +1Js] - (13)

(B) (U )(xv) = Y a¥f(x; + ja—v1y), (14)
i€z’

X = ((— 1%, ( = 1), ( — 1)7x3). (15)

(C) (UM )Nxv) =flx —v,¥) + af((x — v1)
— 2((x — vt)-e,)e;,v — 2(v-e,)e,) .
(16)
The functions appearing in formulas (10), (14), and
(16) are always to be understood as functions with spatial
support contained in Q. In other words, f'= O if the spatial
argument does not take values in 2.
Using the semigroup U(#) the solution of the original
problem (1) with initial condition
S(xv,t =0) = fo(x,v)

can be formally written in mild form as

Sxv,e) = (U@} (x,v)

(17)

+f ds(U(t — )T (), fN(x¥) . (18)
(¢]

The integral form (18) is much better suited for the kind of
arguments we shall develop; however, it will provide only
mild solutions to the original problem.

We shall present in detail problem A. Problem B can be
worked out along the same lines. At the end, we shall sketch
the proof for problem C.

Let d = max(a,,a,,a;) and, for any set E, let C, (E) be
the space of bounded continuous functions defined in E.

The functional setting for problems A and B will be the
Banach space:

B, = {fGCb(QX]R3XR+ )
x Axvn(1 + (1/d*)|x — vt |2)er’2v2] —1
GC,,(Qx]R3xR+ )},
with the norm defined by

(19)

I flls, = sup A0 |(1+ (1/d %) |x — vt [Hexp(Fv?) .
(20)
For problem C we shall use the space
B, ={/eC, (AXR*XR , )
X [ fxwn) e ]~ <eh(|x —vD)}, (21)

where 4 is a given strictly positive function in C, (R | ) and
the constant ¢ may depend on f.
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In order to apply the contraction mapping principle, we
need some technical results which we shall summarize in the
next section.

ll. ESTIMATES FOR THE FREE-STREAMING
SEMIGROUP AND FOR THE COLLISION OPERATOR
Lemma 1: U(¢t) maps B, into B,.
Proof: For any @eB,, there is a constant K such that

(U@ )(x <K T alle=yo (x +ja—vt), (22)

jez?
where y, (x) is the characteristic function of the domain :
1, xeQ,
Xo (X) = [0, xg() . (23)
Now consider the function
Jo(xp) zzall‘X](Zl—l)al,(Zl+l)a|](x1) ; (24)
leZ
and let us define
M, =max (1 + 2k + 1)?). (25)
k>0
Then we have
Sa DKM (14 (1/a)x]) ™" (26)

Proceeding in a similar way for x, and x, and collecting the
results, we get
(U@ )(x,v)<Ke ""MI(1 + (1/d>)x?)~",  (27)

which concludes the proof. O

Lemma 2: Let u and w be two orthogonal vectors,
lu| >0, |v| > 0. Then for any a > 0, any xeR’, and any teR | ,
the following inequality holds:

f (1+a?x +us)>) 7 '(1 +a?x +ws|?) " 'ds
0

T 11 1 1
1 + a’x? a[|u|+|w|+|u+w]}' (28)
Proof: This Lemma is a particular case of Lemma 1 in
Ref. 20, where the proof can also be found. ]
Lemma 3: Let f,geB,. Then, under the hypothesis (6)

fo ds(U(z — s)[Q(f(s5).g(s)) — fSIR (g(s))])(x,v)€B, .

(29)

Moreover,
‘ f ds(U(t —5)Q(f(5),8(5))) (x,v)

0

<12FdmSs N, || f1| gl »
’ [ astwe - ts0R gm0 |

(¢]

<4FdTS;5, N, | f1 lell (30)
where

N, = maxa”*(1 + x2)?, (31)

x»0
S5, = sup 1——*——q—e"z"’zdw. (32)

veR® JR3? q6+1
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Proof: Let f,geB,. Then
|Q(£8)(x + ja — v(t —5),v,5)]

7/2 21
[ aw f do [ deBb.g)
R3 0 0
Xf(x+ja—v(t—s5)v.s)gx +ja—v(t—s),w,s)

7T/2 2
<j dw j o j de B0 |71 liel
R? (o] 0

-1

1 . ’ —rv
-(1+?|x+_]a—vt+(v—v)s|2) e

-1 .2
X(1+711?|x+ja-—vt+(v—w’)s|2) e,
(33)
From (6), (10), and (33) it follows that
U(t —5)Q(f(s),g(s))(x,v) is bounded by

3 2
146 —s)Q(f,g)K(1 + Z) Fr||f |llglle ="

1 —

[ aw AL
R’ q
We can now evaluate
f dS(U(t—S)Q(f(S),g(S))(x,V))}
(¢]
<y a""f ds|Q( £,g)(x + ja — v(t — 5),v,5)]
jez? Y
XXo(x+ja—v(t—3))
3 /2
<4N, f dsf dwf do
0 Rr3 0
2T
XJ de BOD| /) lglle™ " e
(¢}
X(1 4 (1/d*)|x — vt + (v —v')s)?) ™!
{1+ (1/7d3)|x — vt + (v—w)s|)™ ", (35)

where we have used that |j|>|ja|/2d ,
a PN (1 + (1/d?) |jal)
and

(1 + (1/d %) |jal?)1 + (1/d?)|x — vt + ja+ (v — ¥')s|?)
211+ (1/d?)|x — vt + (v —V)s]?). (36)

Due to the geometry of the binary collisions, the vectors
v — v'and v — w' appearing in (35) are orthogonal. Recall-
ing that |v—v|=gcosf, |v—w|=gsinf and
[v—V +v—w|=gqg, we have

1 1 1

v—w]

3
h gcosOsinf

Taking into account (36) and (37), exchanging the order of

v —v¥| [v—vV +v—w

(37)
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integration and applying Lemma 2 in (35), we obtain

/2 27 .
f dwf def de B(O,g)e""
R? [o] (o]

t
Xf (14 (1/d%)|x — vt + (v —v')s]H) !

0
1+ (1/dD)|x — vt + (v —w)s|) !

1 l4+q _p2p
. d

14+ (1/d*)|x — vt | L g'+® ¢ v

< 3Fdr’S;,

14+ (1/d?)|x —vt|*

Analogously, let f,geB, . Then |U(t — s)[ f(s)R (g(5))]] is

bounded as in (34).
Therefore proceeding as in the first part of the Lemma:

<3dFm

(38)

f ds(U(t —s)[ f)R(g(s))]) (x,¥)
0

<y amj ds| fR(2)|(x + ja — v(t — 5),v.5)
(o]

jez?

XXolXx+ja—v(t—s))
<4N, || F1| llglle = 77(1 + (1/d ) |x — vt )

t 7/2 2T
f dsJ- de- def de B(6,9)
0 R? 0 0

X(1 4 (1/d %) |x — vt — gs|}) " le= "%

and
/2 21
f dwf def de B(6,g)e ="
R? ("} (i}

XJ ds(l1 + (1/d*)|x — vt — gs|*) ™!
0
<Fdm’S;, . a

IV. THE CONTRACTION MAPPING PRINCIPLE

The estimates calculated in the preceding section will
allow us to show that for certain initial conditions one has a
contraction property for a nonlinear mapping related to Eq.
(18).

Let us consider the evolution equation (1) without the
loss term, i.e.,

gf VY, = QLS

= (39)
t

with initial condition f,. The (formal) mild solution of (39)
is

f(x)v:t) = (U(t)fo)(X,V)

+ [ =-90(0), oD s @0)
o]

For any @eB,, we define the operator 4 by the formula
(40), i.e.,
(Ap) (x,v,8) = (U()po)(x,¥)

+j ds(U(t — )0 (@().0())) (x,¥) ,
(¢]
(41)

where @,(x,v) = @(x,v,0). From the previous estimates, it
is easy to see that A4 is a well-defined operator from B, into
B

e

Proposition 1: If 0<@qeC, (AXR?) and g@,(x,v)
<I<e—12u2

K < (487°FdS, , N.M2)~", (42)

then A satisfies the contraction mapping principle on D,
where

Dy = {0<geB,/|lp | <2/ U @o||} -

Proof: Since py,<Ke ™~ ’2”2, we have, by Lemma 1, that

(U@ (xV)<KM e~ ™ (1+ (1/d*)|x — v )71,
therefore

1T @oll<KM: . (44)

Moreover, by using Lemma 3, inequality (44) and condition
(42), we get for peDy,

, where

(43)

J ds(U(t —5)Q(p(8),@($))) (x,7)
4}

<12FdmSs, N, 4| U0 @yl
<48FdmSs, N, KM || U)@,||<| U@ o| -

Therefore

4@ [|<2|U@)@oll
implying that ApeDy .

We shall now prove that 4 is a contraction mapping on
D, with respect to the norm (20), provided (42) is satisfied.
Let @Dy Then

(45)

|[4p —A:/Jl(x,v,t)<st| Ut —9)Q(@(5).@(s)) — Ut — )Q (¥ (5),¢ ()| (x,¥)
0

t T/2 21
<J ds ¥ a"'f dwf do | deB(O,g){p(x +ja—v(t—s),V,s)
0 jz? R’ 0 0

‘| — Yl(x + ja— v(t—5),W.s) + P(x + ja— V(£ — 5),W's)
@ — Y|(x + ja—v(t—5),¥,5)ya(x + ja— v(—5))

=f ds[|[(U(t = )2 (@(s),|l@ = P[(HN (x| + [(U —)Q (|@ — (). ¥()) (V) [] -
0

1143 J. Math. Phys., Vol. 28, No. 5, May 1987

G. Toscani and V. Protopopescu 1143



From this point on, taking into account the first of (30)
|[Ap — AY|(x,v,0)
<4UM@ollllg — (1 + (1/d*) |x — vt )7
=" 12FdrSs,
<48Fdm’Ss N.M ) K |l — |,

which proves the proposition.

(46)

V. THE ITERATION SCHEME

The contraction principle derived in the preceding sec-
tion solves the “auxiliary” Boltzmann equation (39) which
is obtained from the original Eq. (1) by removing the loss
term — fR(f). It is natural to expect that restoring the
original equation by reintroducing the loss term will not af-
fect the existence result.

The method was first introduced by Kaniel and Shin-
brot®® and soon became a standard procedure.!*?® We re-
mark that the method takes essential advantage of positi-
vity/monotonicity arguments and, as a consequence, could
be applied so far only to situations in which the equilibrium
solution is the vacuum state.

Let 0 < T < o and let /, and u, be two functions in Dy
such that 0</,(x,v,2) <uy(X,v,t) pointwise.

We define recursively two sequences, /, and u,, as solu-
tions of the equations

al

—iati+v-vxlk+1 +he o R(u) = QUL (47)
auk+l

T+V'quk+l +uk+1R(lk):Q(uk,uk), (48)
Lo 1 (xv,0) =u,, ((x,v,0) =fo(x,v); k=12,. (49)

where f,(x,v) is the initial value distribution of the problem
to be actually solved. At any step, /, and u,, are solutions of
simple linear systems for which the existence and uniqueness
theory is a settled issue.** > Moreover, if the pair (/y,u,)
satisfies the beginning condition,* viz.

0o () <1y (8 <uy (D) <uo(8), 1€[0,T], (50)

then the solutions of the systems (47)—(49) are unique, be-
long to D, and satisfy the inequalities

O<Io(t) gll(t) <lz(t)<' U () <u () <up(t) . (51)

The argument in Ref. 29 shows that, when the two sequences
converge to the same limit f= lim u, (¢) = lim /, (¢), this
limit is the mild solution of the nonlinear Boltzmann equa-
tion (1) with initial condition (17). Summarizing, we can
propose the following.

Theorem 1: Let 0< f,eC,(QAXR?*) and f,(x,v)
<Ke"’2 ”2, with

k<(56FdmSs, N, M)~ " (52)

Then Problem 4 has a unique, non-negative global mild so-
lution.

Proof: Take I, = 0. The beginning condition reduces to
O<u, (1) <uy(t) . (53)
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Since /, = 0, Eq. (48) gives
u, (x,v,2) = (U(1)ue(0))(x,v)

+ J ds(U(t — 5)Q (uy(5),ua(5))) (X,¥)
o

= (Augy) (x,v,¢) .
Choose
uo(x,0,) = 2 U@ fylle =" (1 + (1/dH) |x — vt |?)~!

and recall that K satisfies inequality (52); then u,eDy, and,
since 4 maps Dy into D,

0<u, (x,v,1)e 7 (1 + (1/d ) |x — vt |?)
<lusll = lAul| <2 ULl 5

which proves the beginning condition (53).

Now we prove that the limits of the monotone sequences
u, and /, are equal.

Owing to Egs. (47) and (48), these limits satisfy

Ixovt) = (U (67) + f ds(U(t - $)[Q1(s),1(5))
0
—u(HR () (x,v), (54)

u(x,v,t) = (U@ )(%,v) + J ds(U(t —s)1Q(u(s),u(s))
0

— ()R (u(s))]) (x,v) . (55)
Therefore since /<u:
(u — l)(x,v,t)<f ds(U(t —s)[Q(u(s),(u—D(s))
(6]
+ Q{(u —1)(5),I(s))
+ ISR ((u — D) (x,v). (56)

Now, apply inequalities (30) to (56), recalling that ||/ || <||«||
QLU
i — <4 U]l 12FdrS, N, - — 1
+ 2 U || -4FdT S5, N, lu — |
<S6FdmSs, N KM |lu —1||.
When (52) holds, (57) implies u = /.

(37)

VI. CONCLUDING REMARKS

We have proved a global existence theorem for the non-
linear nonhomogeneous Boltzmann equation in 3-D-paral-
lelepipedic geometry with partially absorbing-partially peri-
odic boundary conditions (problem A).

From a technical point of view the result falls into the
area of point-estimate results, based on positivity/monotoni-
city arguments. While implementing these arguments, we
have used the explicit form of the free-streaming evolution
semigroup and the fact that the equilibrium state of the sys-
tem is the vacuum (zero) state. This explains the choice of
both the geometries and the accommodation coefficients
which do not include the conservative case (@ = 1). For the
case @ = 1, the constant K in Proposition 1 becomes zero.

Conservative boundary conditions (a¢ = 1) have been
studied in different functional settings and with different
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techniques®’~2% the two types of results can be considered

complementary.

The constant K appearing in Proposition 1 and in
Theorem 1 controls the norm of the initial data for which the
global existence results can be proved. It is essentially a
smallness condition on the initial data (closeness to equilib-
rium) of the same type like those imposed in Refs. 8, 14, 15,
18, and 20. The noticeable difference in our condition (42) is
that two new parameters control the value of the constant K:
the typical dimension of the body in which the gas evolves, d,
and the accommodation coefficient at the surface of the body
a. The dependence of X on d and a supports the physical
intuition. The smaller is d and the higher the absorption
(i.e., the smaller is @), the larger is the expected compensat-
ing effect and, therefore, the larger is the class of allowed
initial conditions.

The method used throughout this paper can also be ap-
plied to any spatial domain with partially absorbing-partial-
ly backward reflecting walls including the purely absorptive
walls (a = 0) (see Ref. 30).

The technical reason for this is that the free-streaming
semigroup for partial backward reflection maintains the
functional dependence on the spatial variable®! which is es-
sential for our estimates. Certainly, this does not apply to
specular reflection in domains other than parallelepipedic
and to any diffuse reflection.

Obviously, one can solve the exterior problem with par-
tially absorbing—partially specularly reflecting boundary
conditions for rather arbitrary domains."

With minimal changes, the proof applies to problem B
and to variants of problems A and B in one or two dimen-
sions (infinite slab, infinite prism) with boundary condi-
tions analogous to (7) and (8).

A slight modification is required when dealing with
problem C (Q = {xeR%/x,<0}). For any heL,(R,)
NC, (R, ), h>0, one defines then the space

B,, = {/eC, (QXRXR_)/| fxv.1)|

<ch(|x —vt|)e= """}

endowed with the norm

1F1ls,,, = sup | flxv.1) le=""n ~'(|x —vt]).

From this point on, the estimates in Lemma 1 and Lemma 3
follow as in Ref. 26, with the action of the free-streaming
semigroup replaced by (16). In this case, due to the form of
the semigroup, perfect reflection can be included.

The results can be generalized as to aliow a much slower
decay of the data at large velocities. Instead of the Maxwel-
lian e~ ", one may use powerlike decays of the form
(140v%) % k> (3 —8)/2 (see Refs. 20 and 26). The esti-
mates become more elaborate but not less straightforward.
Also, depending on the functional space chosen to solve the
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problem in, slightly weaker cutoff conditions may replace
(6) (see Ref. 24).
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The results of numerical investigations based on series analysis indicate clearly that the method
of phantom fields constructs nontrivial, self-interacting scalar Euclidean boson field theories. It
is found that these continuum theories arise as the scaling limit to normal critical points of
lattice statistical mechanical models. The character of these theories is numerically
indistinguishable from that of a classical theory on the lambda line near the tricritical point.

I. INTRODUCTION AND SUMMARY

Recently Baker and Johnson' announced a procedure
for the construction of a nontrivial, self-interacting, Euclid-
ean boson field theory in four dimensions. In a subsequent
paper? it was proven their method, the method of “phantom
fields,” constructs a theory which has all the usual properties
of a field theory. The exception is rotational invariance
which was not proved because a lattice based ultraviolet cut-
off was used, although current information is consistent with
rotational invariance.

Two important properties have not yet been treated in
detail. The first is the question of nontriviality and the sec-
ond is the question of in principle computability by series
methods of the resulting field theory. It is the purpose of this
paper to study numerically these two questions. The second
question, if answered in the affirmative (in a more detailed
manner than we can treat it), implies unique limits to the
limiting processes described previously® but does not ad-
dress the question of, for example, lattice independence. We
do answer numerically the computability question to a suffi-
cient extent to allow us to treat numerically the question of
nontriviality. De Carvalho e al.® have suggested, but not
proved for our case, that for a four-dimensional self-interact-
ing Euclidean field theory to be nontrivial, the critical in-
dices of the corresponding statistical-mechanical, critical-
point theory must be classical without logarithmic
corrections. Our results are in fact in accord with their sug-
gestions and the resulting theory we obtain is nontrivial and
has, within fairly small numerical error, the aforementioned
properties.

We concentrate our numerical work on the Blume®-
Capel® model in four dimensions, which is a special case of
the phantom field method. In order to calculate its proper-
ties we rely on the analysis of high-temperature series.® We
consider the region along the lambda line near where it runs
into the tricritical point. Put otherwise, we look at a range of
parameters where, in the continuum limit, the renormalized
four-line coupling constant is positive (and goes to zero at
the tricritical point).

The main results of this analysis are that there are val-
ues, of the parameter .S, which characterizes the Blume-Ca-
pel model, for which the high-temperature series expansions
determine a continuum limit which represents a nontrivial
self-interacting Euclidean boson field theory in four dimen-
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sions. The characteristics of this theory seem to agree with
the classical exponents (mean-field and Ornstein—Zernike
theories).

In the second section of this paper we introduce the
phantom field model and attendant notation. We show how
the Blume—Capel, or hyper-strong-coupling limit fits in the
phantom field picture. We also discuss briefly the nature of
the high-temperature series and their employment in the
analysis of the continuum limit.

In the third section we analyze the magnetic susceptibil-
ity y and the correlation length £2. In terms of the high-
temperature expansion variable K in the limit as the critical
point is approached,

X< (K. —K)77, foc(K . —K)™" (L1)
define the critical indices ¥ and v. We find that as a function
of K, y may have a conflyent singularity which diverges like
(K. —K)~"*+8 where A=0.25 + , but it is very weak and
may or may not be present. We estimate that in the range of
field theoretic interest for the hyper-body-centered-cubic
lattice ¥~ 1.00 4+ 0.02, where 1.00 is the classical value. We
find for £ that there is not much evidence for a confluent
singularity. If one exists, it must be weak. We estimate
2v = 1.00 + 0.02, where 1.00 is the classical value. In addi-
tion we have used these analyses to determine K, (S). As a
further study, in preparation for latter sections, we have
computed y (& ?). This study has the advantage that the sin-
gular point is known tobe £ 2 = «. For convenience® we use
the argument x, £ 2 = 0.1x/(1 — x) so £ > = oo corresponds
tox = 1. Here we estimate y/2v = 1.00 4- 0.01 where 1.00is
the classical value. No real evidence for a confluent singular-
ity was found. If one exists, it is rather weak. Corresponding
results have been obtained for the hyper-simple-cubic lat-
tice, but with lower precision.

In Sec. IV we analyze in various ways d >y/dH %, where
H is the magnetic field. As the critical point is approached,

d%y

8H2°C(KC—K)_Y~2A’

(1.2)

which defines the critical exponent A. The quantity of most
interest is the four-line, renormalized coupling constant g,
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g= —UEI%(aAX2§4)_l

2
= — 100v(1 _x)zg_le(52(x))[a4x2)(2(§2(x))]—‘,
(1.3)

where v is the specific volume per lattice site and a is the
lattice spacing. We find as a function of the parameter S’ that
g traces out a gently curving line which crosses zero going
from positive to negative as S increases. The portion where g
is positive corresponds to a nontrivial field theory. The por-
tion where g is negative, in the context of the mean-field
analysis,® represents a spinodal point which is the analytic
continuation through a first-order phase transition. This
theory differs by a change of limits from that proved? to exist
and its significance to constructive field theory is not yet
clear to us, although field theoretic perturbation theory in
low order appears able to construct such a case. The numeri-
cal example of Baker and Johnson' is of this class.

In Sec. V we review the implications of convexity and
how they apply to whether or not the singularities seen in
Secs. IIT and IV represent actual second-order phase transi-
tions or an analytic continuation to a spinodal point. It is
shown that a resolution of this question in the neighborhood
of H = Oinvolves the consideration of @ *y/dH * and in some
cases, of course, even higher magnetic field derivatives.
Mean-field theory gives a specific prediction for the critical
point limit of d *y/3H *. From the global point of view a scan
for the region 0<K<K,, 0<H< « for singularities in y is
required, although this search can be restricted in H by use of
the high-field Griffiths—Hurst-Sherman (GHS) inequal-
ities of Ellis ez al.'” They also prove that for 1<S<v3 enough
inequalities hold to assure that a normal critical point oc-
curs. Using results of Newman,'" we have slightly extended
this range.

In Sec. VI we give an analysis of the behavior of 3 *y/
JH * and we present evidence, making due allowance for nu-
merical errors of estimation, that a mean-field prediction for
d°%y/9H * holds. Thus the general mean-field picture® that
the variation of S’ leads to a lambda line of ordinary critical
points which end in a tricritical point and continue with a
line of first-order phase transitions appears valid. A surpris-
ing detail of mean-field theory, which also appears to be val-
id, is the analytic continuation through the phase transition
along the H = 0 line to a spinodal point. This behavior if
correct, is contrary to what is known about the up—down
magnetization phase boundary in the two-dimensional Ising
model.’>"?

In the seventh section we report a global scan over K and
H in the region of S where g > 0. We find that the results are
in accord with expectations and that this region does in fact
correspond to a normal critical point so the continuum limit
exists and is in principal computable from the high-tempera-
ture series expansion. This result (numerical) answers the
second of the two questions we set ourselves and completes
our numerical study with good evidence that the method of
phantom fields can construct nontrivial, self-interacting sca-
lar boson Euclidean field theories in four dimensions.
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Il. PHANTOM FIELD MODEL

As the purpose of this paper is to examine numerically
the questions of trivality and computability of the models
proposed by Baker and Johnson' and proved to exist by Ba-
ker,? it will suffice to consider in detail a particular model.
Specifically we start with the lattice cutoff version of the
structure

Z= f@tﬁ(x)exp{ - Jd"x[(V:;S)2

M+ A (4 + b1 @
of a scalar, Euclidean, boson field theory. After we introduce
the lattice cutoff, (2.1) becomes

+ o
Z:M_1 fHd¢r

Y L S

9 {5} a

b 44 g 65+ b0 | @)
where M is a formal normalization constant, r ranges over a
finite portion of the space lattice, {8} is one-half the set of
nearest neighbor sites on the lattice, v is the specific volume
per lattice site, e.g., a* for the hyper-simple-cubic lattice, a is
the lattice spacing, g is the lattice coordination number, and
:¢" : is the normal-ordered product. The normal order prod-
uct'* on a lattice (a>0) is

:¢2p: _ i (2p)(—=1Y 2—jcj¢2p—2j,
/=0 (2p =2)j!

where C is the commutator [¢ 7,4 ] and, in four dimen-

sions is proportional to a2 It is convenient to reexpress

(2.2) as

“+ o0
Z—M-! ...Jndg'i exp{KZZO'iO'i-n-s
w i

i {8}

_z [Za'i2+g00?+100i6_Hiai]]’

(2.3)

(2.4)

where a magnetic field has been added at each site,
o, = (16v/qa®K) ¢, Ay = Asg’a®K 3/ (4096v%) , (2.5)

and the value of 4 is determined by

() =1= e x2exp( — Ax? — gox* — Apx®)dx

ST exp( — Ax? — gox* — Apx®)dx
(2.6)

for H; = K = 0. The parameter K plays the role of the in-
verse temperature in the continuous spin Ising model. The
limit K— K [, the critical point, corresponds to the contin-
uum limit, a— 0, because the correlation length in units of
the lattice spacing £ and the Euclidean mass m satisfy® the
relation maé = 1, and £ - « as K— K, at an ordinary sec-
ond-order phase transition. We will discuss the possibility
that a triple point might intervene to prevent the computa-
tion of this limit by series methods. For the cases we study in
this report that problem does not arise.
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The case of (2.4) that we have selected for detailed nu-
merical investigation is the hyperstrong, bare coupling-con-
stant limit. That is to say, A, — o before 2 —0. By taking the
normalization condition (2.6) into account, we find that the
limiting single site spin distribution reduces to>'

(s —S) +8(s+S5)1S 7+ (1 =S Hb(s), S>1,
2.7)
in the absence of a magnetic field, where 6 (x) is a Dirac delta
function. The moments of (2.7) are, for zero magnetic field,
Y P =(s"*") =0, I,=(1)=1,
L, =(s") = §7 ",
The various quantities of interest which we will study

are the magnetic susceptibility y, and the second moment
definition of the correlation length £ . They are defined by

X=Z<00Ui)y §2= [2 l.2<0'00'i>](8/1’)‘1. (2.9)

We may deduce from the divergence of these quantities the
location of the critical point, which as we have remarked,
corresponds to the continuum limit. Further quantities of
interest are the renormalized four-line coupling constant g
and the renormalized six-line coupling constant A. They are
defined by

o U 52/1’ 24y —1
&= <a4)(9H2(X§) ’

2.8
n>1. (2.8)

(2.10)
VY I aes -

A= (a4) s XED) T

In subsequent sections we will analyze them by the
method of high-temperature expansions. These expansions
are known for general single-site spin distributions through
tenth order in K. The information for the series for y, £ 2 and
d2y/dH *is given by Baker and Kincaid.® That for 9 *y/0H *
is given by Johnson and Baker.® We will also need y for
general H and that series is directly derivable from Kincaid
etal’

As a function of the parameter S, see (2.7), there are a
number of significant values for the model. For § = 1, Eq.
(2.7) reduces to the spin-} Ising model as there are only two
peaks in the distribution for that case. For S<v2, the Yang-
Lee theorem holds (Lieb and Sokal'®). It is useful to write
out explicitly the first few terms of

% _
OH*?

(I, —313) + 4K, —3I3)I, + O(K?),

(94
X — (I, — 1511, + 30I'}) + gK (61,1,

0 (2.11)

+ 1075 — 150131, + 27013) + O(K?),

which become, on substituting in the moments,

X (S2—3) 4 4gK(S? — 3) + O(K?)
oH”

4
97X _ (5%— 155 + 30) + gK(65*

P (2.12)

— 14082 4 270) + O(K ?),

where ¢ is, as at (2.2), the lattice coordination number. At
S=[1(15—105)]"?~1.541 598 07..., the J*y/3H*
changes from positive to negative for K=0. At §
= [1(15 4+ 105)]"?~3.552 953 05..., it changes back to
positive at K = 0 and remains so for all larger values of S. At
S =v3=1.732 050 8..., d *y/3H * changes from negative to
positive for K = 0 and remains so for all larger values of S.
This zero is a double zero in K. These signs of these deriva-
tives are important in determining the signs of the renormal-
ized coupling constants (2.10) as y and £ * are necessarily
non-negative by Griffiths inequalities.'® Of course, we need
to know the signs and values of the limit as K- K for the
determination of the corresponding field theory.

lll. ANALYSIS OF THE SERIES FOR THE
SUSCEPTIBILITY AND THE CORRELATION LENGTH

We here begin the discussion of our numerical analysis
with an analysis of the series for the magnetic susceptibility y
and the second moment definition of the correlation length
£7 [Eq. (2.9)]. From an analysis of these series we deter-
mine estimates of the critical temperature K, the diver-
gence exponent ¥ for y, and the divergence exponent 2v for
&7 In a separate analysis, we also estimate the ratio 1y/v.
The main method of analysis in this section is to compute the
Padé approximants to the logarithmic derivative of y and of
£72. The rationale behind this procedure is that if, for exam-
ple, y«< (K, —K)~" for K near K., then dln y/dK

= —y/(K—K,)+o{(K—K_,) ") for K near K,. This
leading order can be well represented by Padé approximants.

Sample of the series we consider are, for example,
S = 1.77 on the hyper-body-centered cubic (HBCC) lattice

X(K) =1+ 16K + 257.0632K > + 4130.069 500K * 4 66 210.948 37 K* + 1 061 448.254K ° + 1.699 821 922 % 10K ®
+2.722 135043 X 10°K 7 + 4.356 595 244 X 10°K ® + 6.972 493 233 X 10'°K °

+ 1.115 469 449 10K '© 4 - -

>

3.1)

£7(K) =2K + 32K %+ 514.132 287 5K * 4 8260.233 199K * ++ 132 420.5991K ° + 2 122 878.690K © + 3.399 634 065K 7

+ 5.444 240 577 x 10°K ® + 8.713 255 847 X 10°K ® + 1.394 507 671 < 10"' K 10 4 --- . (3.2)
For the analysis of the ratio y/v it is convenient to consider the series y (x) where we first revert (3.2) to give K(£ ), next sub-
stitute that series in y (K) to give y (£ 2y, and finally use the transformation [ as used in Eq. (1.3)],£? = 0.1x/(1 — x), tomap
the critical point £ 2 = o into the point x = 1,
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¥ 'Hx) =1—08x —0.162 658x> — 3.093 68 x 10~ 2> —

4.527 533 372X 10 3x* — 8.5472 X 10~*x°

—2.046 432 231 X 107 *x® — 1.907 577 470X 10 ™*x7 — 1.248 786 254 10~ *x®

— 1.034 627 788 X 107 *x® — 7.233 145199 X 10~ 5x1% — -+ |

The use of the Padé method and the assessment of its appar-
ent errors is discussed in more detail in the next section.

We present in Table I a general survey at H = 0 of the
more common critical point parameters of the Blume—Capel
model,** together with their apparent error. This error is
plus or minus the number in parentheses and is in the last
digit quoted. For the hyper-simple-cubic (HSC) and HBCC
lattices, we examine the Blume—Capel model for 1.7<5<2.1.

Anticipating results from subsequent sections, we will
find that there is a tricritical point at about S, = 1.829 for
the HBCC lattice and at about S, = 1.939 for the HSC lat-
tice. Therefore those results in Table I for .S larger than these
values are likely to be for a spinodal point in a metastable
region. Those data for .S smaller are for a true critical point
while, of course, S =5, is for the tricritical point itself. As
we will also see of additional results throughout this paper,
the results in Table I are consistent with the critical proper-
ties of the mean field analysis of Blume et al.®

The K, estimates of Table I are determined through
Padé analyses. We computed Padé approximants to d In y/
dKandd In £ %/dK toobtain estimates of the X, . Both analy-
ses were examined to determine a best X, for each lattice and
value of S. Additional analyses beyond what are reported in
Table I have been made, but we have just reported a repre-
sentative sample. The reader should take note that the preci-
sion falls at the ends of this range. As will be seen in later
sections this result is a general feature. Since logarithmic
corrections to, for example, y « (1 — K /K ) ~!are expect-
ed*® for S=1.0, and none are observed in this range, it is
logical to suppose that the behavior changes for some inter-
mediate value of S. More particularly, in the course of the

TABLE 1. Critical temperatures and exponents for the magnetic suscepti-
bility and correlation length on the HBCC and HSC lattices.

HBCC
S K, 2v/y Y 2v

1.7 0.063 31(3) 1.00(1) 1.03(3)* 1.0(1)
1.8 0.062 309(8) 1.00(1) 1.02(2)* 1.01(2)
1.829 0.062 015(5) 1.000(3) 1.01(2)* 1.O1(1)
1.9 0.061 29(5) 1.00(2) 1.00(1) 1.00(1)
2.0 0.060 23(2) 1.00(1) 0.99(5)® 1.0(4)
2.1 0.059 17(4) 1.00(1) 0.96(6) 1.0(5)

HSC
1.7 0.129 (1) 1.01(2) 1.05(8) 1.1(2)
1.8 0.125 8(2) 1.005(6) 1.04(2) 1.0(1)
1.9 0.122 5(1) 1.00(3) 1.03(1) 1.04(9)
1.9393 0.121 2(9) 1.00(3) 1.03(7) 1.03(4)
1.95 0.120 9(6) 1.00(4) 1.02(5) 1.03(5)
2.0 0.119 (5) 1.00(5) 1.0(4) 1.0(2)
2.1 0.116 0(8) 1.00(8) 1.00(7) 1.0(3)

Indicates error estimates increased as implied by the Baker—Hunter analy-
sis.
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I
analysis of the next section we see some evidence that this
value is near 1.73.

A further possible problem in the analysis of these series
is the possibility of confluent singularities. This situation is
discussed in more detail in Sec. IV. Here we have employed
the Baker—Hunter!” method of analysis which, while de-
pending on an estimate of K, takes account of this possibil-
ity. Here y may have a confluent singularity which diverges
like (K. — K) "+ *, where A =~0.25 4+, but it is very weak
and may or may not be present. For the function £ %, there is
not much evidence of a confluent singularity. If one exists it
must be a very weak one. The values of ¥ and 2v were deter-
mined by the aforementioned (d log/dK) analyses. The er-
ror estimates were increased where necessary as indicated by
the Baker—Hunter analyses. The results are all consistent
with ¥ = 2v = 1, the mean-field prediction.

To estimate directly the ratio y/2v, we analyze the series
of the type Eq. (3.3). A quick look at Eq. (3.3) shows that
¥~ '(x) is apparently converging at the critical point, x = 1.
Direct analyses of this series reveals a zero at x = 1 with an
error of less than 1 x 10~ for the highest orders (using nine
or ten terms) of Padé approximants. The Baker—Hunter
analysis about x=1 results are given in Table I. Note that in
the current case the x analysis yields a smaller apparent error
than the d log/dK.

IV. ANALYSIS OF THE SERIES FOR THE
RENORMALIZED COUPLING CONSTANT

The first step in the analysis of any series is to identify its
salient features. As pointed out in Sec. I, Eq. (1.3), the series
weareinterestedinistheratio — d°y/dH */y’& *. Asfurther
pointed out, this ratio changes sign at high temperatures
from positive for § < v3 to negative for.S > v3. Infact,'® 9 %y/
JH ? possesses a double zero in K at § = V3. Numerical stud-
ies show that for S < v3 these two zeros occur for complex
values of K roughly in the directions of plus and minus /.
They collide at K = 0 for .S = v3 and then one moves, as S
increases, out the positive real axis and the other along the
negative real axis. The one of physical interest is the one
which moves along the positive real axis. We follow again the
transformation of Eq. (1.3) to express g in terms of a vari-
able x such that the critical point, when it exists, always
corresponds to x = 1. It is convenient to use

4
G =0.01 (”—)ng

v

—_ . 2& 2 2182 —1 41
(1—x) 8H2(§ CONAE* ()]~ (4.1)

as an object for study since it is finite at x = 0.

We expect, if the field theory is to be nontrivial, that g
and hence G will be finite for x = 1. One such sample series is
for S = 1.77 on the HBCC lattice. The reason for this choice
will be clear later.
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G(x) = —0.1329 4 5.316 X 10~ % + 0.137 899 503 6x? 4 1.275 148 92 10™°x” + 9.248 526 797X 10 *x*
+ 2.796 826 869X 10~ 3x° + 3.133 267 087 X 10 °x® + 1.812 932 607 X 103x7

+ 1.449 688 782 103x® + 9.731 249 025X 10~*x® + 7.453 208 147X 10~ %0 4 -~ .

We have analyzed this series by the method of Padé approxi-
mants.'® The results are displayed in Fig. 1 as well as those
for S = 1.80 on the HSC lattice. The location of the nearest
singularity of G(x) can be estimated by the poles of the ap-
proximants. This method suggests a singularity in the vicini-
ty of x = 1.3-1.4, and so a radius of convergence of the Ma-
claurin series for G(x) is estimated to be noticeably greater
than unity. It will be noticed from the figure that the zero on
the positive real axis which started from x = 0 at §=1.732
has now moved out to about x =~0.78. It is this scale of move-
ment which reflects the sensitivity of the model to the value
of S.

The Padé approximant [L /M to a function f(x) is de-
fined by the equations

[L/M]=P,(x)/Q,,(x),
O (X)fAx) — P, (x) =O(xE+M+1y
On(0) =10,

where P, and Q,, are polynomials of degrees L and M, re-
spectively. In Table II we list the values of various approxi-
mants for § = 1.77 on HBCC lattice at x = 1. The standard
procedure®® for analyzing the apparent error is as follows.
First eliminate approximants with defects ([5/5], [6/4],
and [7/3] in this case). Then examine the sequence of near
diagonal approximants where L. + M = 9, 10 for the largest
and smallest values. Here for L + M = 10 they are [3/7]
and [4/6] and for L + M =9 they are [3/6] and [5/4].
Referring to a table of values (not herein reported) we find
for this case that these extremal properties continue to be
valid for all values of x between zero and unity. The largest
difference is between the [3/6] and the [3/7]. These ap-
proximants give the upper and lower limits shown in Fig. 1.
If we examine the difference between these two approxi-
mants, we find [by (4.3) ] that it is proportional to x'°. Next
the standard procedure is to compare the values of the ap-

(4.3)

0.15 T T T T T T T T

0.10

0.05

0.00

-0.05

G(x)

-0.10

-0.15

-020 .

-0.25 1 1 1 1 ! I\ I\ i
01 02 03 04 05 06 07 08 09 10

X

FIG. 1. G(x) as a function of x. The solid curve is for § = 1.77 on the HBCC
lattice and the dotted curve is for S = 1.80 on the HSC lattice.
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|
proximants 0 < x<1 to see what the largest coefficient of x'°

inferred is. Here we find that the largest such coefficient
occurs at x = 1 and is (times 100) 6.2 X 10~2 Thus we esti-
mate that G(1) = 8.14x 1072 4 6 X 10~* for this case, or
g = 4.07 4+ 0.03. A similar analysis has been performed for a
number of values of S on both the HSC and the HBCC lat-
tice. We do not always estimate a symmetrical error bound
but sometimes there appears to be more error on one side of
the central value than the other. These results are summar-
ized in Fig. 2. Here G(1) vs S is plotted together with the
apparent errors and an interpolating line for the central val-
ues for each lattice. Note that S =1.77 for HBCC and
S = 1.80 for the HSC seem to be roughly optimal in terms of
the ratio of G(1) to the apparent error. At.S = 1.80 for the
HSC lattice we estimate G(1) =0.116 + 8x 1073 or
g =11.6 4+ 0.8. The point G(1) = 0 will be considered in
more detail in the next section and its relation to tricritical
phenomena discussed.

There is a further possible source of error. It might pos-
sibly be that the point x = 1 is not a regular point but some
kind of singular point of G(x). To check this possibility, we
have analyzed the series (4.2) (and of course the other cases
as well) by the confluent singularity method of Baker and
Hunter.!” In brief, this method assumes

g(x) = z A,(1—-x)"",
i=1

where here the singular point is taken as x = 1, and trans-
forms the series for G(x) to a series with simple poles at 1/,
and residues — A4,/¥;, which can be analyzed by Padé ap-
proximants. The results of this analysis are not definitive,
but are consistent with the following two possibilities. First,
x = 1 is a regular point of G(x). Second, there is some indi-
cation that the approach to G(1) might be like (1 — x)?,
0.5 < ¢ <0.8. In this case, however, the coefficient is negative
so the curve is hooking upwards. Under these circumstances
the values quoted for G(1) may be too low, but the conclu-
sion G(1) > 0 holds a fortiori. Hence we conclude that there

(4.4)

TABLEII. Values of the Padé approximants to G(1.0) for .S = 1.77 on the
HBCC lattice times 100.

N
D 2 3 4 S 6 7

2 692659 7.39657 7.95947 8.09460 8.13352 8.13164
3 725602 11.0541 8.10086 8.14845 8.13172 8.13335°
4 756506 8.00989 8.13604 8.13237 8.14023¢
5 7.75189 8.19678 8.13208 8.13533
6 7.88467 8.11582 8.14633
7 797007 8.17795
“Pole at — 0.208 287 with a residue of 5x 1012,
®Pole at — 0.098 890 with a residue of 1 10~ 4.
“Pole at — 0.558 796 with a residue of — 4 108,
G. A. Baker, Jr. and J. D. Johnson 1150
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FIG. 2. G(1) as a function of S. The solid curves are the central values for
the HBCC and HSC lattices and the apparent errors are indicated by +
signs.

exist ranges of ' for which the renormalized coupling differs
from zero and hence the theory is nontrivial.

It is also of interest to consider the behavior of the posi-
tive real zero, x,, as a function of S. This behavior can also be
deduced numerically from the direct Padé analysis of G(x).
We display, along with the apparent errors, the results of our
analysis of this quantity in Fig. 3. The point at which the line
of zeros crosses x = 1 corresponds to G(1) = 0, which we
discuss in the next section. We estimate that the crossing
occurs at about S = 1.829 for the HBCC and at about
S = 1.939 for the HSC lattice. It is interesting to see that the
line of zeros passes smoothly to x > 1 which corresponds to
£ 2 <0. In order to look further at the structure of G(x) we
have computed

h(x) =G(x)/(1 —x/xy) (4.5)

and plotted # = k(1) in Fig. 4. Although the results are not
definitive, they are least consistent with the idea that A(x) is
a smooth function so that (1 — x/x,) factors out of G(x) as

1.2 T T T T T T T

x 09~ HBCC ]

0.8 -

07 -

0.6 | I 1 L !
.70 1756 180 185 190 195 200 205 210

S

FIG. 3. The positive real zero, x,, of G(x) as a function of S. The central
values are connected by solid curves and the apparent errors indicated by
+ signs.
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FIG. 4. h(1) as a function of S. The solid curves are the central values for
the HBCC and HSC lattices and the apparent errors as indicated by -+
signs.

a simple zero. Note that since x, =0 for S =3, (1) =0
automatically for that S.

V. CONVEXITY

The hyperstrong coupling model discussed in this paper
is mathematically the same as the Blume*~Capel® model. It
is of interest to see how our results compare with the Blume
et al.® mean-field analysis. Briefly, their results, insofar as we
require them, are as follows. The Helmholtz free energy is, in
mean-field approximation, given by

AM) —A©0) =aM?* +bM* +cM®+ -, (5.1)
where

a=S%/2—-1J,

b=(1/8B8)(S*—18%, (5.2)

c=(1/63)(§S°—3S°+ 35,

with 8 = 1/kT, k is Boltzmann’s constant and T is the abso-
lute temperature, andJ = ¢S *K /B. The critical temperature
is identified by ¢ = 0, i.e., K. = ¢~ ', and it is a normal criti-
cal point if 5> 0. This situation prevails if §' <v3, indepen-
dent of temperature. When we note that ¢>0 for all S,
1<S < w0, we find a tricritical point for S = v3 and a triple
point for S>3, b<0. In this latter case, the triple point
occurs at a temperature determined by 4ac = b when the
phases M = 0, M = + ( — ib /c)"/? are in equilibrium with
each other. For the same value of S at a higher temperature
determined by  Sac=3b? there appear at
M = + ( —1b/c)"* two critical end points at nonzero val-
ues of the magnetic field H which are joined by first-order
transition lines (in the H-T plane) to the above mentioned
triple point. [For this discussion we require M <1, in order
that expansion (5.1) be valid.]

Put more simply, as far as our present work is con-
cerned, when b changes sign the critical point at H =0
passes through the tricritical point and for b negative lies
behind a triple point and hence becomes a spinodal point on
the other side of a first-order phase transition from the point
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about which our series expansions are constructed. Thus the
continuum limit would not be accessible by our numerical
methods. From the computational point of view, as S in-
creases from V3, there is a divergent susceptibility at H = 0,
T = T,, the tricritical point, which bifurcates into two criti-
cal end points (H #0) at each of which there is a divergent
magnetic susceptibility. In mean-field theory, the triple
point which remains at A = 0 is transparent and a simple
analysis of y (T) for H = 0 will show only the spinodal point
with no indication of the passage through the first-order
phase transition to the, in principle, inaccessible region. Of
course, as long as b remains positive no such problem arises
and an ordinary critical point occurs.

The actual situation is considerably different. It is ele-
mentary to show, in the one phase region, that the Helm-
holtz free energy, which from thermodynamic consider-
ations is convex as a function of the magnetization M, is
given by

1 | (M)“azx (M>°
AM) —-AQ) =—y =) ——[— —_[=
0 © 2X(1¥-) 24 \y/ OH? Y
X[Lﬂ_LL(‘?zXﬂ
720 dH* 72 y \GH?
+0(M?), (5.3)

for small M. At an actual ordinary critical point, we expect
from the ideas of thermodynamic scaling that

aZnX
aH2n

«<(1—-K/K )72, (5.4)

for H =0 as K—K_ from smaller values of K. The critical
indices ¥ and A are susceptibility and gap indices, respective-
ly, as we have remarked before. To compare (5.3) with (5.1)
we see that y — o as K— K, corresponds to a—0. The next
term, b, is generally of order unity so that 3y — 2A ~0. This
relation is satisfied by the mean-field values y = 1 and A =3
in four dimensions. The renormalization group suggests
logarithmic corrections, but our discussion here is not a pre-
cise one so we will not go into this point now. The third term
¢ is also of order unity. However, each of the two terms
which form the coefficient of M ©in (5.3) are proportional to
(1—K/K. )*P"=2 =7 which diverges roughly like
(1 — K /K_) 7. Thus in order for the mean-field picture of
the tricritical point to hold we must have

. J 4/1/ ( 0 ZX) -2
I — =10,
<x X om* \oH?

plus sufficient cancellations in the higher-order terms (in
M) to make a local expansion analysis about M = 0 a valid
guide to the tricritical behavior. Without such cancellations
thermodynamic scaling suggests the structure of (5.3) to be

(5.5)

AM) —A40) = (1 —K/K)**~"B(y), (5.6)
where
y=M?>(1 —K/K_ )>7r— & (5.7)

In addition to the mean-field analysis of the Blume-
Capel model described above, a renormalization group anal-
ysis has been made, and is reviewed by Lawrie and Sar-
bach.?! If we follow their computations (Chap. 5) but re-
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place the coefficient v of ¢¥° by v(1 — K /K.), then the
behavior parallels that for 4, implied by the phantom field
constraint 4, = const in (2.5) when we use the common

value v = | [as defined by (1.1)]. In their Eq. (5.147) this

behavior means that j|g| ~ * is not an additional scaling

variable. The resulting theory gives the critical and tricritical
exponents exactly the same as in the mean-field analysis. The
logarithmic corrections to the critical exponents are clearly
absent both along the “lambda line” [.S less than the .S for
which d2y/dH?(K,) changes sign] and at the tricritical
point. Thus this aspect also agrees with mean-field theory.
This point is important as theoretical evidence®*>?? links the
occurrence of logarithmic corrections to the triviality of the
theory.

Related results have been obtained by Hara et al.?* They
show that for spatial dimension d > 4, which is of course not
our current case, that when [Eq. (2.4)] A, £o /~10 are positive
and when g,/4 >andA,/A * are small enough, that mean-field
theory correctly gives the thermodynamic critical indices.
Forexampley = 1, = 0,and A, = 3, where a is the critical
index for the specific heat and A, is the gap index determined
by the ratio d 2y/JH */y. Their results give a further indica-
tion of the relevance of mean-field theory to field theories
and are in agreement in this respect with the Ginsburg crite-

rion.?!

If we use, in addition, Sokal’s*® inequality, 2v>7, which
follows (has been proved on hyper-simple-cubic lattices) by
reflection positivity for these models,” then we find that
(2.10) becomes

v azX 25£dy—1
I ] <const(K, — K (1/2)(d—~4)
¢ (ad> (3H2(X 59 ( )

(5.8)

Thus the field theory, constructed by the phantom field
method for these “soft” systems, has no two-particle zero
energy scattering for d >4 and hence is trivial*® since the
Lebowitz inequalities also hold** here.

To investigate the validity of the mean-field picture lo-
cally, we compute in the next section the behavior of d*y/
JH * to see if (5.5) does in fact hold. It is, of course, only
necessary and not sufficient but if it fails in a significant way
then the mean-field analysis is inadequate to describe the
actual behavior.

Now consider the scaling forms (5.6). For small values
of S, 1<S<v2, we know by the Yang—Lee theorem® that we
have a normal critical point at M = 0, K = K, . By the results
of Ellis ez al.,'° even though the Yang-Lee theorems fails for
S>v2, the Griffiths—Hurst-Sherman inequalities and the
Lebowitz inequalities continue to hold for 1<.S<V3. These
results assure that a normal critical point continues to exist
at M = 0, K = K_ and that it is characterized by a divergent
correlation length and magnetic susceptibility. In other
words the mass gap goes continuously to zero as K—-K
and so the continuum limit is accessible to high temperature
series methods. Ellis ef a/.'® in fact prove more; they show
that as S increases that those same inequalities continue to
hold for

coshSH>(S*—252—1)/(S*—1), (5.9)
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where H is the magnetic field variable. Further improve-
ments are possible. Using results of Newman,'! we have been
able to show that those inequalities again hold for

2cosh K>2 —352+85%, (5.10)

which in the region K < K. gives a slight improvement over
S = v3 in the range over which we can rigorously prove the
existence of a normal critical point and hence a continuum
field theory. Newman’s method should be capable of further
extension.

We increase .S and look for a possible conversion of this
critical point to a tricritical point. The most sensitive crite-
rion availableis a violation of convexity, i.e., a failure of 3 24 /
JdM *>0. If this failure of convexity should occur for the re-
gion y = O(1) where our expansion (5.3) is presumed to be
valid, then we find by direct computation the necessary con-
ditions (based on the first three terms only) are

%y %y 17 (82)()2

>0, .

oH? SH* 2 \gH*

The first condition corresponds to 5<0in (5.1) and the sec-
ond one is necessary that there be a real solution for y. If the
first condition fails, then 4 is automatically convex for the
region y = o(1) without further consideration. Note that
the mean-field case (5.5) satisfies (5.11). So long as either of
the conditions (5.11) fail and the coefficients of M 2, M 4, and
M © do not simultaneously vanish [we do not expect this as a
stronger cancellation than (5.5) would be required], 4 (M)
is locally convex in the sector y = o(1). This result does not
preclude trouble for y = O(1), which values still scale to
M=0asK-K,.

In order to complete our check of the identification of
K, as a normal critical point, we note that, by standard ther-
modynamics

3’4 | _ 1

oM? |y y(KH)'
where y is the magnetic susceptibility in any set of variables
we choose as convenient. In order to assure that there are no
other intruding singularities, we must scan the region
0<K<K,, — 0o<H< + o for values of y = . This pro-
ject is carried out in Sec. VII by use of the series through
tenth order of Kincaid et al.” for M(K,H). The coefﬁcierﬁs

(5.11)

(5.12)

are polynomials in the moments of the single-site spin distri-
bution. We first differentiate the magnetization M to get y.
Then we note that if we weight (2.7) by e | the moments
are

2(n—-1)
I,=1, IZn:S (1+7%) ’
14 2S2—1D7
9§23, (5.13)

L, ,= y

R WD Y ST
where we have used the notation,

7 =tanh 1HS . (5.14)

The substitution of these moments directly into the series
gives the required results.

VI. ANALYSIS OF THE SERIES FOR 94y /0H4

Thermodynamic scaling predicts that the quantity 3 *y/
OH */(x*£®), which is related to the six-line coupling con-
stant A of Eq. (2.10), should be finite in the limit £ - o0, if
this limit exists. A convenient quantity to study here is

4\ 2
Ax) = 10—4(“—) x4
v

= - -0 e e on
oH*

(6.1)
where x is given as in (1.3) and A(O) is finite. As explained
in Sec. II for S<[4(15—105)]1"% A(0)<0, for
[3(15 —105)]'"? < S < [4(15 4 105)]'/%, A(0) >0, and
forS larger A(0) < Oagain. By (5.1), (5.3), (4.1),and (6.1)
the coefficient of M © in the expansion of the free energy is

(6.2)

1 1\ 2
c= 7207 (1 —x) [A(x) +10G“(x)].
If ¢ is positive finite or infinite, or negative and finite, when
x—1and G(1) >0, then locally (i.e., near H = 0) the free
energy has the structure of a normal critical point.
Let us begin by studying A(x). For §=1.77 on the
HBCC lattice, the series® is

A(x) =7.178 437 59 — 11.626 799 424x + 3.517 844 534x? + 1.253 104 024x> — 0.477 791 0471x*
+0.122 437 001 Ox> — 9.434 831 223 107 %x® + 3.368 411 731 x 10 >x” — 1.093 361 292X 10~ *x®

+1.214038 453107 %x* — 9.115 136 829X 10 *x' 4 --- .

We analyze this series in the same general way as we did in
Sec. IV. In Fig. 5 we show, together with the apparent errors,
the Padé approximant values as a function of x for (6.3). We
also show in this figure the corresponding results for A(x)
on the HSC lattice for § = 1.80. It is to be noted that the zero
of A(x) which occurred at x = 0 for $~1.5416 has moved
to about x = 0.965 for the HBCC case and to about
x = 0.925 for the HSC case. In Table III we list the Padé
approximants to A(1) based on the series (6.3). We esti-
mate A(1) = — 0.093 4 0.02. That the relative error is so
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(6.3)

-

large is mainly because, as can be seen from the figure, the
value is quite small for A(1). The corresponding result for
S = 1.80 on the HSC lattice is A(1) = — 0.17 4+ 0.03. We
have performed corresponding analyses for a number of val-
ues of S. These results for A(1) are summarized in Fig. 6 for
the HBCC lattice and Fig. 7 for the HSC lattice.

A further feature of A (x) which is of interest is the loca-
tion of the zero as a function of § which enters the region of
physical interest at §~ 1.5416. We display our Padé esti-
mates of the location of this zero p,, in Fig. 8 for the HBCC
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FIG. 5. A(x) as afunction of x. The solid curveis for S = 1.77 on the HBCC
lattice. The apparent errors are indicated by + signs. The dotted curve is
for § = 1.80 on the HSC lattice. The apparent errors are indicated by X

signs.

lattice and Fig. 9 for the HSC lattice again with the apparent
errors shown. As these figures show, the zero contour runs
up to near x = 1 and then runs back to smaller x and, of
course, leaves the physical region at x = 0, §~3.5530. The
contour Fig. 9 for the HSC is much less well determined than
that for the HBCC, but is easily consistent with the idea that
the zero contour is tangent to the x = 1 line for the same
value of S as that for which G(1) = 0. The contour Fig. 8 for
the HBCC reaches a maximum for a value of S which agrees
within error with that for which G(1) = 0. The value at this
maximum falls a little short of the x = 1 line, but we are
inclined to think, since the discrepancy is only a small multi-
ple of the apparent error, that these results are not inconsis-
tent with the idea that y,(S) is tangent to x = 1 at the S for
which G(1) =0.

We turn now to a study of c of Eq. (6.2). In Figs. 6 and 7
we show both — A (1) and 10G(1)? vs S for the HBCC and
the HSC lattices. The correlation between these two curves is
very strong. As pointed out in the previous section, mean-
field theory predicts that [A(x) + 10G?(x)] vanishes to
leading order. In order to investigate this question we have
computed

;(x) = — [0.1A(x) + G*(x)1/(1 —x), (6.4)

which we have displayed in Fig. 10 as a function of x, togeth-
er with the apparent errors for S = 1.77 on the HBCC lattice
and S = 1.80 on the HSC lattice. The method of Padé analy-

3.0 T T T T Y T

20 +

1.5 -

10G? and -A

FIG. 6. The solid curve displays — A(1) vs S for the HBCC lattice. The
apparent errors are indicated by + signs. The dotted curve shows 10G(1)?,
where G(1) is as in Fig. 2 with the apparent error indicated by X signs.

sis is as described above. A Baker—Hunter confluent singu-
larity analysis'’ for x = 1 (HBCC) was also performed and,
although not definitive, was consistent with the idea that at
x =1, ¢,(1) is negative and finite while giving some indica-
tion that ¢, (1) is approached like — (1 —x)%*~ "% in such
acase ¢, (x) would hook upward and hence c,(1) is larger (¢
smaller) than estimated. This type of error would not
change the local nature of the free energy and hence locally it
would look like a critical point so long as ¢,(1) < 0. We
show in Fig. 11 the behavior of ¢, (1) as a function of S. We
conclude that as ¢, (1) is finite and as from a previous section
y « (1 —x)""thatc [Eq. (6.2)] is finite or at least we can-
not, by our numerical analysis, reject the mean-field hypoth-
esis.

It is somewhat surprising, but correct so far as we can
tell numerically, that perfectly reasonable covergent results
are obtained along the x = 1 (£ ? = ) line in the x-S plane
both for G(1) >0 and G(1) <O0. Since we have numerically
verified that locally mean field theory predictions are valid,
it appears that in addition as predicted by mean-field theory
the first-order phase transition characterized by a line of
triple points can be penetrated by analytic continuation to
the spinodal curve, £ 2 = o, lying behind it. In other words
we see numerically no indications of corrections to leading-
order mean-field behavior such as logarithms. This is not to
say, of course, that there may not perhaps be nonanalytic
corrections terms subdominate to the leading order behav-

TABLE IIL Values of the Padé approximants to A(1.0) for .S = 1.77 on the HBCC lattice.

N
D 2 3 4

5 6 7
2 —0.218 140 —0.055 599 0.193 108 —0.108 265 —0.101 721 —0.102 380*
3 0.087 791 —0.085 803 —0.105176 — 0.099 265 —0.088 513 —0.092 734
4 —0.135023 — 0.098 467 —0.100 577 —0.070 650 — 0.092 447
5 — 0.065 031 —0.100 191 —0.099 197* —0.093 200
6 —0.109 939 —0.097 994 —0.107 859*
7 —0.818 88 — 0.094 291
* Defective approximant.
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FIG. 7. The solid curve displays — A(1) vs S for the HSC lattice. The
apparent errors are indicated by + signs. The dotted curve shows 10G(1)2,
where G(1) is as in Fig. 2 with the apparent error indicated by X signs.

ior. These results fill in extra detail with regards to the mean
field picture of the behavior of the “phantom field”” model in
the vicinity of the tricritical point, and we think add versimi-
litude to our picture.

Vil. ANALYSIS OF y(K,H), GLOBAL CONVEXITY

As pointed out in Sec. V the global convexity, and hence
the nature of K = K., H = O as a critical, rather than a spin-
odal, point can be assured by showing that y~'>0 for
0<K<K,,0 < H< . Infact, by the use of a theorem of Ellis
et al.,'® we need only check H smaller than that given by
(5.9). In this section we report our numerical calculations
on this subject. Following the methods discussed in Sec. V,
we have produced by computer manipulation from the re-
sults of Kincaid et al.” the coefficients of y (K,H) as series in
K whose coefficients are polynomials in the cumulants of the
single-site spin distributions. For example the coefficient of
K ®has 755 terms. The cumulants are expressed in terms of

Yo

0.4 I 1 1 1 ) 1 1 L L
1.601.656 170 175 1.80 185 190 195 2.00 2.06 2.10

S

FIG. 8. The zero contour y,(S), for A(x) in the x-S plane for the HBCC
lattice. The apparent errors are indicated by + signs.
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FIG. 9. The zero contour, y,(S), for A(x) in the x-S plane for the HSC
lattice. The apparent errors are indicated by + signs.

the moments in the usual way. If we use the spin distribution

as given by Eq. (2.7) multipled by ¢’” and the parameter 7,

(5.14), which is convenient to express
cosh Hs = (1 + 7)/(1 — ),
sinh Hs = 27/(1 — 77,

then the moments [Eq. (2.8)] are given by (5.13). The

bound, (5.9), above which y decreases monotonically with 7
for all K becomes

(7.1)

2 =8%(S2—3)/(S2+1)(§?=2) (7.2)

for $2>3 and 7, = 0 for 1<S2<3. A sample of the HBCC
series is

Y (K H) =r, + 16(k5 + k163)K + 8(96k 10,65 + 167k,

+ 3265 + K3 + ook )K? + o0, (7.3)
where as usual the cumulants are

0.0 T T T T T T T T

-041
-0.2
-0.3
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X

FIG. 10. The factor ¢, (x), Eq. (6.4), of the coefficient, ¢, of M % in the ex-
pansion (5.3) of the free energy is displayed as a function of x on the HBCC
lattice for.§ = 1.77 and on the HSC lattice for S = 1.80. The apparent errors
are indicated by + signs for the HBCC and X signs for the HSC.
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FIG. 11. Thefactore, (1), Eq. (6.4), of the coefficient, ¢, of M ®in the expan-
sion (5.3) of the free energy is displayed as a function of § for the HBCC and
HSC lattice. The apparent errors are indicated by + signs.

k=1, kK,=L -1}, wy=1I1,—3L1 +2I3,

Kky=1I,—4LI, —3I% + 12LI? — 6I%,....

By the substitution of (5.13) into (7.4), we obtain the cumu-
lants exactly for any desired .S and 7. Then we substitute
them in (7.3) and so obtain the X series for y, given.S'and 7.

By way of orientation, we illustrate in Fig. 12 various
expected contour plots of y to show what we expect in var-
ious circumstances. In Fig. 12(a) we show the contour map
of y for 1<S<V3. In this region the GHS inequalities hold
and y is monotonically increasing for 7 <0 and monotoni-
cally decreasing for 7> 0. These conditions are considered
normal and are unshaded. This picture holds for all dimen-
sions greater than d = 1. In the case d = 1 there is, of course,
no critical point nor phase boundary. The ridge line in the 7
direction (dotted line) continues up the whole 7 = O line. In
the region v3 < S we can show directly from the first term of
Jdy(K = 0)/dH that there is a region along v = 0 line near
7 =0, where y increases for 7> 0 and decreases for 7 <0.
This region is shaded in Fig. 12(b). The ridge line (in the 7
direction) has a bifurcation point as shown and we expect,
and can even prove for § an extremely small distance above
v3, that there continues to be a normal critical point. The
bifurcation point corresponds to the zero discussed pre-
viously in 3’y (K,H = 0) /dH *. When the zero moves out as
Sincreases to coincide, at.S = .S, , in location with the critical
point, we expect a tricritical point to result and have shown it
in Fig. 12(c). As Sincreases above S,, Fig. 12(d), we expect
a triple point with two-wing phase transition lines to occur.
These two new phase transition lines should end in critical
end points with infinite susceptibility. It is these critical end
points that we seek in our global scan; because in the case
that they occur the critical point which we had been follow-
ing at H = 7 = 0 would lie behind the triple point and be-
come a spinodal point for which the necessary properties to
construct a field theory have not been demonstrated. Finally
we illustrate, Fig. 12(e), the behavior for d = 1. We note
that numerically a small discontinuity in the magnetization

(7.4)
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FIG. 12. Sketches of possible contour maps of the magnetic susceptibility y
for the Blume-Capel model. For 7 < 0 the unshaded portion is monotonical-
ly increasing and for 7> 0 it is monotonically decreasing. The contours are
light solid lines. First-order phase boundaries are heavy solid lines. Circled
points are critical points. Dotted lines are the ridge lines in the 7 direction,
v =tanh K. (a) This case corresponds to 1<S<V3. (b) This case corre-
sponds to V3 < S < S, where S, is the tricritical point value. (c) $ =, the
large dot is the tricritical point. (d) This case corresponds to S>.S,. The
intersection of the three first-order phase boundaries is the triple point. The
large dot is the spinodal point, which in mean field theory is reached by
analytic continuation along the line 7 = 0 through the triple point into a
metastable region. (e) The one-dimensional case.

M and a very high ridge in y are rather hard to distinguish
and so cases (b)—(d), and even (e), are hard to differentiate
when S is near to S,. Fortunately for the purposes of this
paper such an effort is not required.

Our principle analysis of the behavior of y (K,H) in this
section is to consider the K series and to transform the K
series (7.3) to a series in x as was done in Eq. (1.3). We
mention explicitly that the correlation length used in the
transformation is that for H = 0 so that x = 1 corresponds
to K = K, (when appropriate) for all — 1<7<1. We ana-
lyze both the x and X series by the method of Padé approxi-
mants. The results of these analyses are displayed as a con-
tour map of y in Fig. 13 for the HBCC lattice with § = 1.77
and in Fig. 14 for the HSC lattice with §' = 1.80. The regions
of uncertainty are shown by dashed lines. The curves in this
region are approximated by the formula
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FIG. 13. A contour map of y for § = 1.77 on the HBCC lattice. The solid
contours represent our numerical results. The 7 direction and K direction
ridge lines are displayed. The dashed portions of these curves are included
as an aid to the eye.
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T [tex—d) [7/(1 —x)) + /(1 —x)°11Ve
(7.5)

for appropriate values of the constants a,..., /. We are able to
obtain sufficient precision to see that the contour plots are of
type 12(b), which corresponds to a normal critical point and
hence verifies that for those cases at least the continuum
limit (€% = « ) occurs, and so a field theory, in the sense
discussed previously, can be constructed and is nontrivial
(Sec. IV). A perhaps more revealing display of our results is
the three-dimensional representation given in Fig. 15 of the
same case as Fig. 13.

We have performed some additional analyses. In parti-
cular, a number of Padé analysis of the logarithm derivative
of y were performed, searching for possible singularities re-
flecting critical end points. We mention only a couple of
these results. First for § = 2.1 on the HBCC we found a

HSC x

1.0 =21

1
\
1
4 Y
—— [}

1
~ \
S~

1
)
g i \|_
/’ =~a 1
~. 1
/ \N

~ 0~

x 0.5 —
\ ]
N
~
~
0.0 | ! [N
0.0 0.1 0.2 0.3 0.4

T

FIG. 14. A contour map of y for S = 1.80 on the HSC lattice. The solid
contours represent our numerical results. The 7 direction and the X direc-
tion ridge lines are displayed. The dashed portions of these curves are in-
cluded as an aid to the eye.
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HBCC

FIG. 15. The function y(x,7) for § = 1.77 on the HBCC lattice is displayed
as a three-dimensional plot. The large values near 7 = 0, x = 1 are truncat-
ed and displayed falsely as a flat top.

contour map like that of Fig. 12(d). The two wing phase
transition lines were represented by a line of singularities
that end somewhere between 7 = 0.1 and 0.2. For larger 7
these singularities split and no longer appear for real X but
move into the complex K plane in the vicinity of the ridge in
the K direction. We have also examined .S = 1.85 on the
HBCC lattice, but it is too near to S, for the contour plot to
clearly resolve between the contour map types of Fig. 12(b),
12(c), or 12(d). The singularities bifurcating into the com-
plex K plane near the K-ridge line is a general effect. It is well
known in complex variable theory that at regular points ana-
lytic functions do not process maxima or minima. Conse-
quently, when, for real values of X, y(K,H) passes over a
maximum, it must be a minimum in the imaginary direction
at that point. It is not unusual for the function to then in-
crease to a singular point at some nearby complex point. In
the case of y, since by the theory of functions of several com-
plex variables the critical point singularity cannot simply
disappear as 7 changes, the above described bifurcation phe-
nomena is the expected behavior for the cases of Figs. 12(a)-
12(c). However, the representation of these complex singu-
larities limits the useful convergence of Padé approximants
to our ten-term series to about the distance of the K-ridge
line. This limit is a “short series effect” and not an intrinsic
one to the method (except in special cases)."’
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Lochak and Maillard [J. Math. Phys. 27, 593 (1986) ] claim that the Baxter condition, which
was known to be sufficient for the commutativity of transfer matrices, is also necessary (under
some additional technical assumptions). Although the claim is correct, the proof in that paper
is false. In this paper the errors of Lochak and Maillard are pointed out and correct proofs are

outlined.

I. INTRODUCTION

The paper of Lochak and Maillard' addresses the ques-
tion of solubility of lattice models of statistical mechanics
(cf. Ref. 2). For the benefit of the reader, we recall the basic
definitions here. The paper' discusses two kinds of such
models: the vertex and the spin models with the nearest
neighbor interactions. Both types live on square lattices with
periodic boundary conditions. Let L (M,N) be such a lattice
of width M and height .

li. VERTEX MODELS

Let m and n be positive integers. A vertex model is deter-
mined by m*n® numbers u(i, jlk,l), 1<i,j<m, 1<k,I<n,
which are called Boltzmann weights. The Boltzmann weight
u(i, j|k,0) corresponds to an elementary configuration of
spins in the vertex model [see Fig. 1(a)]. To any configura-
tion w of spins on the edges of L (M,N) we assign the number

u(&)) - H u(iyjlk’l)s

i, j,k,1
where the product is taken over all elementary configura-
tions contained in w. The partition function is given by

Fyy @) =Y u(o),
where the summation is over all possible configurations @
and the argument u of Fstands for the m?n? vector u (i, j|k,)
of Boltzmann weights.

It is standard to express the partition function Fy, 5 (%)
in terms of the (row-to-row) transfer matrix T, (#) of the
model which acts on the space ®¥C". The matrix elements

of T, (u) are expressed via Boltzmann matrices U(%,/) act-
ing on C™, where k and / run from 1 to n. The matrix ele-
ments U(k,/), are given by U(k,l); = u(i, j|k,I) and omit-
ting M and u from T,,(u) we have

T, =tr[Utkyl)  Ulkyl) - (D
Then
Frn(u) =tr Ty (u)™. (2)

We summarize the construction above. We are given a set
u(i, jlk,D, 1<i, j<m, 1<k,I<n, of Boltzmann weights de-
noted for brevity by ucR™", We arrange them as n? Boltz-

h(i,J)

u(i,j| k0

(a)
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FIG. 1. Boltzmann weights of elemen-
2 tary configurations in (a) vertex model
and (b) spin model.

v(k,L)

k
®
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mann matrices U(k,l) of order m X m. From those we con-
struct by (1) the transfer matrix 7= T,,(u) acting on
® ™", which determines, by (2), the partition function
Fyn(u).

Solubility of lattice models is known to be related to the
question whether the transfer matrices T, ,(u) and
Ty, n (v) corresponding to two sets of Boltzmann weights
u,veR™™ commute for all M and N (see Ref. 2). Reference 1
discusses this latter question. We fix M and N and omit them
for the moment from the notation T}, (). It is known (cf.
Ref. 3) that T(u«) T(v) is itself a transfer matrix 7°(z) corre-
sponding to the set zeR™" of Boltzmann weights obtained
from u,veR™" by

Z(i19i2;j1’j2|k)l) = 2 u(il’jllk:a)v(i2,j2|a’1) (3)

a=1
(see Fig. 2 for an illustration). Analogously,
T(v)T(u) = T(w), where the coordinates of the Boltzmann
vector weR™™ are given by

n

w(ilyiz;jpj2|k,l) = Z U(il,jllk,a)u(iz:jzla,l)- 4)
1

We organize the vectors z and w into #” Boltzmann matrices
Z(k,l) and W(k,l), respectively, acting on the space C™. In
view of (1), theequation 7(u) T (v) = T(v) T(u) will be sat-
isfied if there exists a nondegenerate matrix R on C™ such
that for all £ and /,

RZ(k1y = W(k,DKR. (5)
Thus (5), which I call Baxter’s condition,? because it is
closely related to the star-triangle relation of Baxter’s,? is
sufficient for the commutativity of T,,(u) and T,,(v) for
all M.
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The first goal of Ref. 1 is to show that (under some
technical assumption) (5) is also necessary. Although the
assertion is correct, its proof in Ref. 1 is erroneous and I
explain the error here.

Denote for brevity m? by d. The equation

TM(u)TM(U)ZTM(U)TM(u) (6)

implies, by (1), that the two sets of matrices Z(k,/) and
W(k,I) on C%, 1<k,I<n, satisfy

te[Z(kyly)  Z(Kpgolg )] = e[ W1 W (Kagodag) |
@)

for any set k,,...,ku1,01;...,05 Of indices. To show the necessity
of Baxter’s condition we need to prove that (7) implies (5).
The authors of Ref. 1 understand it. After stating this, they
say that the proof that (7) implies (5) “is easily seen to be
reduced” to the following assertion (see Ref. 1, Theorem 1).

Assertion 1: Let A and A ' be two subalgebras of the full
matrix algebra L, (C) of operators on C°. Suppose that there
is no nontrivial subspace of C invariant under 4 (this is the
technical assumption I mentioned before). Suppose further
that there is an algebra homomorphism ¢: A —A4 ' which is
onto and satisfies

tr(a, - -a;) =trip(a,  -a,)) (8
for any a,,...,a,€4. Then there is a nondegenerate matrix
ReL , (C) such that for all ac4

@(a) =RaR . (9

Then Ref. 1 proceeds to prove this assertion. The first point
is that Assertion 1 is true even without (8), which should be
apart of the conclusion and not of the assumption. The proof
is as follows. Since elements of 4 have no common invariant

Eugene Gutkin 1160



subspace, by Burnside’s Theorem (cf. Ref. 4, p. 182), A is the
full matrix algebra L, (C). By Skolem’s Theorem (cf. Ref. 5,
p- 99), any nonzero homomorphism ¢ of the full matrix
algebra to itself is inner, i.e., there is an invertible matrix R
such that ¢ (@) = RaR ~ . In particular, the assumption of
Ref. 1 that ¢: 4 —A4 "' is onto is also erroneous. It should be
replaced by ¢ #0. Since g is inner, for any aed (in particular
for a=a,---a,) we have tr{ip(a)) =tr(RaR ~!) =tra.
This proves the following proposition, which is the correct
version of Assertion 1.

Proposition 1: Let ACL,(C) be an irreducible subalge-
bra and let ¢ by a nonzero homomorphism ¢: 4 — L, (C).
Then there exists an invertible matrix R such that
@(a) = RaR ! and therefore tr p(a) = tra.

To summarize, Proposition 1 which is the corrected ver-
sion of Theorem 1 of Ref. 1 is trivial. The second point is that
even after this correction, the necessity of Baxter’s condi-
tion, i.e., the implication (7) — (5), is not proved in Ref. 1
because its reduction to Proposition 1 is not there. Actually,
for a good reason, because the implication (7) - (5) does
not reduce to Proposition 1. The implication is proved in
Ref. 3, Theorem 1, where it is the main part of the proof. For
the convenience of the reader I state here the assertion that is
missing in Ref. 1 and outline the crucial point in the proof.

Proposition 2: Let a; and a/, iel, a finite set of indices, be
two sets of operators on C,. Let for any {,,...,i, €],

tr(a,  --a; ) =tr(a; ---a; ). (10)

Denote by 4 and A ' the matrix algebras generated by @; and
a;, i€l, respectively.

Assume that the operators {a;, eI’} (or {a/, icI}) have
no nontrivial common invariant subspace in C°. Then the
correspondence a; = @(a;), i€l, continues to the algebra ho-
momorphism ¢: 4 >4 ".

Outline of Proof: Denote by 4 and 4 ' the abstract free
algebras generated by the symbols a; and a/, i€l, respective-
ly. The correspondence @] = @(a, ) defines the isomorphism
@:4—A’. Thematrix algebras 4 and 4 ' are the quotients of 4
and4 'bytheirideals,i.e., 4 = 4 /J,4’ = A'/J . Theisomor-
phism ¢ descends to a homomorphism @: 4 —A4 ' of matrix
algebrasifand only if@(J) CJ". The proofof this inclusion is
rather intricate (see the proof of Theorem 1 in Ref. 3) and
this is where Eq. (10) and the invariant subspace assump-
tion have to be used. The assertion of Proposition 2 fails if we
omit either one of these assumptions (examples are easy to
construct).

For the reader’s convenience we state here the theorem
on Baxter’s commutativity condition for vertex models
whose proof was the subject of the preceding discussion.

Theorem 1: Consider two vertex models on the square
lattice given by their Boltzmann weights u(i, j|k,/) and
v(i, jlk,0), where 1<i, j<m, 1<k,/<n. Define n* matrices
Z(k,I) and W(k,Il), 1<k,I<n,on C™ by (3) and (4), respec-
tively.

Assume that the n? operators Z(k,l) [or W(k,I)] have
no nontrivial common invariant subspace. Then the Baxter
condition (5) is necessary and sufficient for the transfer ma-
trices T(#) and T(v) to commute [see Eq. (6)].

The invariant subspace assumption, although generical-
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ly satisfied, is very hard to check. It can be replaced by a
certain symmetry assumption on the Boltzmann weights.®

Theorem 1 has a close analog for spin models which we
discuss in the next section.

lll. SPIN MODELS

A spin model on L(M,N) with »n spin states is deter-
mined by 2n®> Boltzmann weights #(i,j), v(k1),
1<i, j,k,I<n, where h(i, j) and v(k,l) correspond to elemen-
tary configurations of spins in the model [see Fig. 1(b)].
Denoting by ueR*" the vector determined by the Boltzmann
weights we define the partition function Fy,  (#) of a spin
model analogously to that of a vertex model.

One can define (in many ways) a transfer matrix 7(u)
of a spin model so that F), , (u) is obtained from T(u) by a
formula similar to (2).

Solubility of a spin model is again related to the question
when T(u) and T(u’) commute for all M,N (see Ref. 2).
Depending on a particular choice of the transfer matrix T
one can define sufficient conditions for commutativity of
T(u) and T'(u’) similar to (5) (we call them Baxter condi-
tions) and ask whether they are necessary.

We remark first that for any spin model S one can ca-
nonically define a vertex model ¥ such that.Sand ¥ have the
same partition function (we say that.S and V are equivalent,
see Ref. 7). This observation makes a separate consideration
of spin models in some sense redundant.

Using the general correspondence S'— ¥ of Ref. 7 may
not be practical but if NV = M = 2K there is a simple way to
transform a spin model into a vertex model (which is pre-
sumably known to the experts). Namely, we rotate the lat-
tice L(2K,2K) by 45 deg so that the two diagonals of the
original lattice become horizontal and vertical, respectively,
in the new lattice L '. Consider separately the even and the
odd numbered horizontal rows of the new lattice (see Fig. 3
and Ref. 2, Fig. 7.1). Figure 3 shows the transformation of
the spin model S on L' into a vertex model ¥ on the lattice
L(2K,K). The number # of spin states of ¥ and .S is the same
and the Boltzmann weights of ¥ are given by u(i,j|k,/)

=v(,hA vk, Hh(Lk).

Let us nevertheless consider the row-of-spins to row-of-
spins transfer matrix 7" for a spin model. It actson ® ¥C"and
its matrix elements are given by

le: """ {:: U(il,jl)” 'U(iMij)

X [h(l']:l'z)h(jpjz) vt 'h(l'Mal'l)h(jM,jl)] 1/2~
(11)

Then the partition function is given by F = tr T, Given
another pair (4',0') of Boltzmann weights we have two
transfer matrices T(hA,wv) = Tand T(h'w') =T".

We define n* matrices a(a, |7,8) on C", 1<a,B,y,6<n
by

aaBlr.d) =Y h@p) ' viapwB.ghip.g'"?

pg=1

Xh'(p,g) "% (p,y)V'(g,8)h’ (7,8) "/~
(12)
Then
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FIG. 3. Transformation of a spin model
(above) into an equivalent vertex model
(below).

X a(iy folizs j3) " @lpgs Jag i1 J1) 1- (13)
Switching 7' and T around we obtain another n* matrices
b(a,B|v,6) such that

(14)
Denote for brevity (a,8) by i, 1<i<n® The argument above
shows the following.

Proposition 3: Let S and S’ be two spin models on the
square lattice L with n spin states given by Boltzmann
weights (A,v) and (A ',0"), respectively. Let Tand T’ be their
row-to-row transfer matrices. Equation (12) defines two
sets a(/,7) and b(i,j) of matrices on C", 1<i, j<n? whose
elements depend on A,v,4 ',v" such that Tand T’ commute for
any size of L if and only if for any indices i,,...,i5;,

tr[a(iyiy)a(inis)  -aliy,iy) ]

= tr[b(ipin)bigis) b iagsiy) ] (15)
Now let I be any finite set of indices and let a (i, j) and b(4, j),
1, jel, be two sets of matrices on C". Assume that there are
nondegenerate operators R,eL, (C), such that for any /, jeI,

b(i,j) = R.a(i, HR ;. (16)
Let us call (16) the Baxter condition (in this setting). The
obvious implication (16) — (15) means that Baxter condi-
tion is sufficient for the commutativity of Tand 7' discussed
earlier. The following is a close analog of Theorem 1 in the
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context of spin models (we use the notation of Proposi-
tion 3).

Theorem 2: Assume that for some kel either the set
{a(k,i)  alipg_ 1 ing)aling,k): ipniy€l} or the set
{b(k,i)) - "b(ip,k): iy,...,ip€l} do not have a nontrivial in-
variant subspace in C" and that the matrices a(k,i), a(i,k),
b(k,i), b(i,k) are invertible for all icl. Then the transfer
matrices T'and T’ commute if and only if the Baxter condi-
tion (16) holds.

In view of the discussion above, it suffices to show that
(15) implies (16). The argument below deduces the impli-
cation from Propositions 1 and 2. This argument is similar to
the argument of Theorem 2 in Ref. 1. Our argument is
simpler and our statement is more general. Essentially,
Theorem 2 of Ref. 1 is the special case of our theorem corre-
sponding ton = 2.

Proof of Theorem 2: Assume for concreteness that
k=1. Applying Propositions 1 and 2 to the sets
{a(1,i))---aliyg,1): ipyenipg€l} and {b(1,i)) - b(ip,1):
i},...ips€l}, we obtain that there is an operator R,eGL, (C)
such that for any /,,...,i,,€l,

b(1,i,) b(iy,1) = Ria(1,i)) +a(iy, DR 7. (17)
For any i€l set
R, =b(1,)) "'R,a(1,i). (18)
As a special case of (17) we have for any je/
b(1L,)Hb(j,1) =Ra(l,a(j R, (19)
which implies
Eugene Gutkin 1162



b(j,DRa(j1) "' =b(1,))"'Ra(l,j) =R;. (20)
now for any i, jel,
b(i, ) = b(1,i) "' [6(LDbGHD 165D !
= [b(1,) 'Ria(L,)]a(, H[a(DR BT
=Ra(L, DR

The theorem is proved.
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In the d-dimensional ferromagnetic Ising and ¢ * systems, the motion of the first Lee-Yang
zero when the lattice size tends to infinity is studied. In particular, a power law behavior at the
critical point, which is distinct from those in noncritical points, is elucidated.

I. INTRODUCTION

The present paper is devoted to a problem concerning
the Lee—Yang zeros of the partition function of the Ising and
@ * ferromagnets.

Since the pioneering works of Lee and Yang,' which
include the proof of the Lee—Yang circle theorem, there have
been published considerably many works related to the Lee~
Yang zeros. Among them are extensions of the circle
theorem to other systems,>* studies of the basic structure of
the zeros,* and its applications in deriving correlation in-
equalities,” normal fluctuation theorems,® or phenomenolo-
gical scaling arguments.’ It is, however, surprising to find
that our knowledge on the actual behavior (or motion) of
the Lee—Yang zeros in specific models is still not so rich.

We concentrate here on the systems in the finite d-di-
mensional hypercubic lattice, and study how the location of
the first Lee-Yang zero behaves when the size of the lattice
tends to infinity. We find, at the critical point, that the mo-
tion of the zero is governed by a power law, distinct from that
in high and low temperature phases. (See Corollaries 4 and
5.) Our proof is based on the various correlation inequal-
ities.®* '

. RESULTS AND PROOFS

Consider a finite d-dimensional hypercubic lattice
ALY={—L/2,—L/2+1,.,L/2} with a free bound-
ary condition. The size L, and the number of the sites L ¢ of
the lattice play central roles throughout the present paper.
The Ising (and ¢ *) models on A (L), with inverse tempera-
ture J and vanishing external field, are described by the fol-
lowing thermal expectation:

("’)IJZZ(J,L)‘IJ [I avige 77 (1);=1,
xeA(L)
1 (1)
H (L) = iy Z @9, J20, g@.€R,
lx —yl =1
x,yei‘(L)

where dv(g) is a single site measure. Here we mainly consid-
ertheIsingmodel withdv(¢) = 8(¢* — 1)dp. Thep *mod-
el is defined by dv(@) = exp( — up > — Ap *)dp, with ucR
and 1> 0.

Let the partition function for the system under complex
external field z be defined by

* New address: Department of Physics, Princeton University, Princeton,
New Jersey 08544,
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L
Z ¢7x)>, zeC. 2)

xeA(L) J

fzLJ) = <exp(z

By the Lee—Yang zeros, we denote zeC which satisfies
SzLJ) =0. (3)

The Lee-Yang theorem'* states that these zeros are con-
tained in the region Re(z) = 0. Letz = + ia,(L,J) be the
first Lee—Yang zeros, i.e., the zeros of f(z;L,J) nearest to the
origin z = 0. To clarify the behavior of @,(L,J) when L
tends to infinity, for various values of J, is the main interest
of the present paper.

Let us define the quantities y, s,, and u, as the follow-
5

ing’:
xeA(L)
SZ(La‘]) = Z <¢)x¢)y>.1;’ (5)
x.peA(L)

where 0 = (0,0,...,0), and
uy(LJ) = Uy(x,y,z,w). (6)

x,p.2,weA (L)
Here the four-point Ursell function (or cumulant)
U,(x,p,z,w) is defined by

Us(x,p,2,w0) = @0, 0.0, — (0.0, ){@.0.)

— e 0, 0.) — (P 0. ) (@, 0.).
Note that, by Griffith’s inequalities,'” y and s, are related by
the inequalities
(L/2)% (L /2,J)<s5(LJY<L* x(2L,J). (7

The following Lemma is among the main tools in the
present investigation.

Lemma 1: For arbitrary real k, />0, and L, we have the
following inequality:

Gk L) — exp( — sy(LJ) k2

> — &lug(LJ)| -k *-cosh([s,(LJ)/2]1k?). (8)
Proof: Let us expand f(ik) as
. o« ( _ kZ)n
k) = ——,
F = 2 o
where
S5, (LJ) = Z (@, "'¢1x2">-
xEeA(L)

Applying the Gaussian inequality'? and Aizenman’s in-
equality (Proposition 12.1 of Ref. 8) to s,,, we find
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_ 2n!(2n — 5)H13

u,|(s,)" "2
A (2n — )12 sl (s2)

0>s,, — (2n — DHN(s,)">

Summing up the inequality, we get the desired inequality
(8). ]
The above lemma and the result by Newman® enable us
to bound the location of the first Lee~Yang zero , by simple
quantities of the systems under vanishing external field.
Proposition 2: For arbitrary L and J>0, the location of
the first Lee~Yang zero a, (L,J) satisfies

d—
<oy 2D (FAOLD ) )

5, (LJ) lus (LN y(L/2)°

Here the final bound in the bracket is valid only for the Ising
systems.

Proof: The upper bound (a,)><s,/|u,| is due to New-
man.” The bound in the bracket is easily derived by a version
of the Griffiths, Hurst, and Sherman (GHS) inequality'*
Us(xp.z,w) < — 2.9, ) (@.9.) {@.p.) valid only for the
Ising models. To prove the lower bound, note that the in-
equality in Lemma 1 with bound |u,|<2(s,)> [ Theorem 5 of
Ref. 13 (b), Eq. (5.3) of Ref. 8] imply f(ik)
>exp( — X) — (X?/4)cosh X, where X = 5,k >/2. Then we
find that f(ik) is strictly positive in the region X<0.9874...,
ie., k2<1.9748.../s,. (]

It is well known that the models in consideration, in
their infinite volume limit L — «, undergo phase transition
provided that d>2. If J < J,, the system is in the high tem-
perature phase where the correlation functions cluster ex-
ponentially, and if /> J_, it is in the low temperature phase
where the spontaneous magnetization appears. '’

Our first results on the motion of the first Lee~Yang
zero are concerned with the systems not at the critical point
J..

Corollary 3: For the Ising models with d>2, we have

L ~4?Sa,(LJ)Sconst, J<Jo, (10)
a,(LJ)~const, J<Jy<J,, (11)
a]y(L’J) ~L 7d’ J>JC, (12)

as L— «. Here J, is a certain constant depending on 4. If
d=1,Eq. (11) is valid for all / < o0, and Eq. (12) holds for
J= w. [Here the relation g(L,J) SA(L,J) implies that
there is a continuous function ¢(J) independent of L, and
g(LJy<e(JYh(L,J) holds for all L; g~ 4 implies that g S h
and g R & hold simultaneously. ]

Proof: Note that we have y (L,J) ~ y (L = «0,J) < o for
J<J., and y(L,J)~M,(J)’L ? for J>J,, where M, (J) is
the spontaneous magnetization. These with Eq. (7) and
Proposition 2 immediately imply (10) and (12). Equation
(11) is a consequence of an independent argument on the
analyticity of the free energy.'® The result for d = 1 follows

from an explicit calculation of Lee and Yang.' ]
Itis strongly expected that the behavior (11) is valid for
allJ < J,.

Our Proposition 2 also provides information on the be-
havior of a, for the systems strictly at the critical point J,.
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First assuming the decay property at the critical point as

<¢x¢y>.ll;~|x_y|_ (13)
we find that the behavior of &, and J,, is distinct from those in
the noncritical phases.

Corollary 4: For the Ising models with d>>2 at the criti-
cal point, we have

—(d+2—9)72 —2
L-W+2-m2gq (LIYSL7?

under the assumption (13).

We can also state the following rigorous version of (14)
without any assumptions.

Corollary 5: For the Ising models at the critical point, we
have

L5385, (LJ.)SL "8, d=2,
L~'"%25a(LJ,)SL™, d»3,

asl— .

Proofs: Equations (14) and (15) are the direct conse-
quences of Proposition 2 and Eq. (13), where in the latter we
have used the exact result 7 = } for d = 2. Equation (16) is
proved using Proposition 2 and Lemma 7 in the Appendix. B

It seems that, at the critical point, our lower bound in
Proposition 2 is more strict in lower dimensions, and be-
comes weaker in higher dimensions.

For the ¢ * systems, we can show Egs. (10), (11), and
a,(LJYZL —¢(J>J,) instead of (12). Similarly, we can
only prove the lower bounds of Egs. (14) and (16).

Finally, let us state a specific result for the “soft” ¢*
models in high dimensions.

Corollary 6: For the ¢ * models in d > 4 dimensions with
sufficiently small A, we have

d—2+m
b

asL— o (14)

(15)
(16)

L-'-425q (LJ)SL 3, (17)

Proof: The lower bound is the same as that in Eq. (16).
For the proof of the upper bound, we use the facts
luy| ~AL “y%, and (@.@,)~|x —y| ~¢*?* and Proposition
2. The former is derived (as in Sec. III of Ref. 17) from the
first- and second-order skeleton inequalities,'® and the latter
is a consequence of the rigorous renormalization group anal-
ysis of Gawedzki and Kupiainen.'® ]

From the representation f(ik) = exp(=( — 1)"k *"u,,)
and a perturbative estimate u,, ~ (combinatoric factor)
( —A)"7'L %"~ for ¢ * models, it is conjectured that

a,(LJ,)~y(LJ.)"3?~L 3 (18)

is the correct behavior of a,(L,J,) for d > 4.

In dimensions d > 4, it has been proved®® that the scal-
ing limits of the Ising and @ * models are Gaussian. Let us
describe a heuristic relation between this fact and the motion
of the first Lee-Yang zero at J.,.

Consider an averaged spin variable
&=L ~“?*+*V3__, 1, @ where we used the normaliza-
tion factor of the critical (i.e., massless) Gaussian theory. If
we denote by Z = + id, the Lee~Yang zero of the partition
function F(Z) = {exp(Z®)), we obviously have
A, = L%7**'a,. Now substituting the conjectured behavior
ofa, (18), weobserve 4,~L @ ~%"?~ x as L » o ifd > 4.
Therefore the first zero 4,, along with all the other zeros, is
driven away to infinity in the thermodyamic limit. Since a

asL— oo.
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distribution without Lee—Yang zeros is Gaussian,” this sug-
gests that ® becomes a Gaussian random variable in this
limit.

APPENDIX: BOUNDS FOR s,

Here we prove a technical lemma based on the infrared
bounds'® and Simon’s argument'' on the critical decay.

Lemma 7: At the critical point J = J_, s, satisfies the
following bounds

constJ 'LV <s,(L,J, )<constJ T 'LT2 (19)

Proof: To prove the upper bound, recall that Griffiths I1
inequality'? and Sokal’s argument®™® on the infrared
bounds'® imply

I Y

x,yeA(L)
where (- --)7 is an infinite volume expectation with the peri-
odic boundary condition, and M, (J) is the corresponding
spontaneous magnetization. For J <J,_, we have M (J) = 0.
Since the expectation in a finite box is continuous in J, we
have

s,(L,J.)<comstJ .~ 'L2,

To prove the lower bound, we recall that Simon’s argument' !
combined with the Simon-Lieb inequality?' imply that for
arbitrary finite sublattice A of Z 9,

(pe@,)s<constJ TIL4H 2 + M (J)?,

Z <¢0¢x )A >C0nst Jci !

x€dA
holds at the critical point. Thus we have

L —d L/4
(&) s>y 3

L’ =1 xedA(L")

(@opy )5 >constJ = 'L,

which, with (7), leads us to the desired lower bound. [ |
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Generalized Riccati equations for self-dual Yang-Mills fields
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It is shown that although no Riccati equations in the strict sense are likely to exist for the self-
dual Yang—Mills fields, certain “generalized Riccati equations” derivable from the Backlund
transformation do exist, and are capable of reproducing the linear system when a certain

constraint is imposed.

1. INTRODUCTION

By now it is well established that the two-dimensional
principal chiral model and the four-dimensional self-dual
Yang-Mills (SDYM) fields are both examples of integrable
systems' with all the characteristic integrability properties,
such as the existence of linear systems, an infinite number of
nonlocal conservation laws, Riemann—-Hilbert transforma-
tions, Kac—-Moody algebra, Bianchi-Backlund transforma-
tions, etc. In fact, these two systems are very similar to each
other in their integrability structures, except in one impor-
tant area: the Riccati equations.

For the chiral model, it is possible to derive a pair of
Riccati equations from the Backlund transformation (BT)
equations generated from the linear system. These Riccati
equations can be used, on the other hand, to establish the
existence of an infinite set of local conservation laws, and, on
the other hand, to reconstruct the linear system, thus com-
pleting the following logic cycle:

linear system

Riccati equations - BT .

No corresponding Riccati equations have ever been
found for the SDYM fields. Indeed, we will show in this
paper that no such Riccati equations are likely to exist for
SDYM. Nevertheless, we will also show that the BT equa-
tion for SDYM can be transformed into a certain set of equa-
tions, which we will call “generalized Riccati equations,”
and which, together with the constraint equation contained
in the BT, are sufficient to reconstruct the linear system. The
situation can be expressed schematically as

linear system

Y
&
P
&
&
S

generalized

Riccati equations < BT .

Il. A REVIEW ON THE RICCATI EQUATIONS OF THE
CHIRAL MODEL

In order to make clear the problem at hand, we first
review the derivation of the Riccati equations and their rela-
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tion to the linear system for the chiral model. It has been
shown in Ref. 1 that a linear system for the principal chiral
fields is

O Y=[A/0-D]AY, d¥v=[-1/(1+1)]4,¢,
2.1)
where A is a complex parameter and 4, =g* d,g,
A, =g*d,g, with g*g = 1. The integrability condition of
(2.1) is the field equation
3 A, +3,4, =0. (2.2)

From (2.1) a specific procedure can be taken to generate a
BT??

8798 —¢%0,8=3.(¢"8), (2.32)

79,8 —-g"d,8=—9,(g"8), (2.3b)
together with an imposed constraint

g7 +¢"g= 128, (2.4)

which is consistent with (2.3) in the sense that (2.3) in itself
already implies that g+ g’ + g’ g = constant matrix.

Now to derive the Riccati equations, we define
I'= — gtg', whichsatisfies T *T" = 1, and rewrite (2.3) and
(2.4) completely in terms of I and 4,4

(1-T)T, = [T4,], (2.52)
(1+T)C, =[T'4,], (2.5b)
F+T'=28 or [?=28T—1. (2.6)

The matrix (1 F I') is invertible, and indeed, from (2.6),
AFD)'=[120FHIAFT. (2.7)

Multiplying (1 ) ! on (2.5) from the left, we get the
following Riccati equations:

r,=[1201-p5)]
r,=I[172014+8)]

X [T4,T + T4, —(1+28)4,T +4,],
(2.8)

where (2.6) has been taken into account.

The prescription to reconstruct the linear system from
(2.8) has been described in Ref. 1, yielding the following
equations:

A —(1-2 — 1
om——"s [~A=B ]M, (2.92)
21-5) 1 —1
© 1987 American Institute of Physics 1167



4, [-0+28 1
oM=——7 [ M, 2.9b
T axml -1 -1 (259

where M can be either a two-component column vector or a
2 % 2 matrix. Conversely, it is also possible to derive (2.8)
from (2.9) in the following way.' Suppose (2.9) has a solu-
tion

=t )
s M,
where each M, is in itself a matrix. Define
F=(M,C+M,)(M,C+ M) ", (2.10)
where C is a constant matrix. Then it is straightforward to
show, without the aid of any constraint on I, that such I
satisfies the Riccati equations (2.8).

Finally, when (2.9) are simultaneously diagonalized,
they become

A [ =1 +4ir 0
aM'=_i[ ]M', 2.11
g 2 0 —1—ir (2.11a)
A [—1—i/F 0
6M’=——”[ }M’, 2.11
7 2 0 —1+i/r (2.116)

where 7= [(1+8)/(1 — ) 1'% Equation (2.11) is in
fact of the same form as (2.1), with A of (2.1) given by either
root of the equation

A?=2BA—1.
We note in passing that one can show from (2.8) that
the following continuity equation holds:
. Tr[2(1 —p)T4,] + 3, Tr[2(1 +B)T4,] =0,
(2.12)

which, when expanded asymptotically at = + 1, gives
rise to an infinite set of local conservation laws.

lil. IMPOSSIBILITY OF RICCATI EQUATIONS FOR THE
SDYM CASE

For SDYM fields in the J-formulation,’ the linear sys-
tem is given by

[0, — (/)3 ]y + B,y =0,

[d. + (1/A)35]x + B.y =0,
where A is a complex parameter, and B, =J '/,
B, =J~'J,, with J* = J. The integrability condition of

Z3

(3.1) is the equation of motion

(3.1

3B, +3.B, =0. (3.2)
From (3.1), the following BT has been generated?*:

JL =TT, =T, (3.3a)

JTL =TT, = =T, (3.3b)
together with an imposed constraint

JU —J T T=4. (3.4)

The structures of (3.3) and (3.4) are similar to those of
(2.3) and (2.4), but there is a difference in that (3.3a) and
(3.4) together can be shown to contain already (3.3b) [or
alternatively, (3.3b) and (3.4) contain already (3.3a) ], but
no such relations exist in (2.3) and (2.4).

Now let I'==J ~'J'. Then (3.3) and (3.4) become
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r,—IT,=[[3], (3.52)
I, +IT,=[IB3], (3.5b)
- '=pF or I'?’=pT+1. (3.6)

The steps that have been followed to derive (2.8) from (2.5)
cannot be carried over for the present case, due to the struc-
tural difference in (3.5) and (2.5). It is apparently possible
to bring the lhs of (3.5a) into a form more closely resembling
the lhs of (2.5a), by multiplying (3.5a) from the left with a
factor (1 + oI'), where the constant ¢ is such that

(1l+oD)I'=(1 4+ 0o,
or equivalently, 0* = Bo + 1. Then we have

(1+ol)(T, —0ol;)=(14+0][T,B,]. (3.7)
However, the inverse of (1 + oI") does not exist and we are
unable to convert (3.7) into a Riccati equation.

Now we will give an argument indicating why there
should be no Ricatti equations for the SDYM system. If the

Riccati equations were to exist for SDYM, the most plausi-
ble form for them would be

(3, —ad, )T =TAT + TB+CT + D,
(3, +@d,) T =TAT+TB' +CT+D",

(3.8a)
(3.8b)

where a is some constant, and 4, B, C, D are matrices pro-
portional to B, while4 ',B’,C’,D ' are matrices proportional
to B,. This specific structure of (3.8) is suggested by the
relations between (2.8), (2.9), and (2.11), and by the de-
sired form of the linear system (3.1).

Taking the complex conjugate of (3.8a) and noting that
't =JIJ 7', we get

[d, — (1/a*)d; 1T
=[I,B,] — (I/a*)[T,(J "'B; )]
— (V/a®)[TJ A N +TJ-ICHT)
+(JBTNHT+J'DYD]. (3.9)

Equation (3.9) is independent of (3.8b), since a# — 1/
(a*). From (3.9) and (3.8b) we would get two separate
Riccati equations,

0=, T =---. (3.10)

Similarly, from (3.8a) and the complex conjugate of (3.8b),
we would obtain

T =, &F =" (3.11)

Equations (3.10) and (3.11) altogether would constitute
too large a number of Riccati equations to correctly recon-
struct the linear system (3.1).

To avoid the above difficulty, suppose we keep only
(3.8a) and its complex conjugate,

[d, —ad,]T =TAT + TB+ CT + D, (3.12a)

[0, — (1/a*)0; IT =TA'T+I'B"+C"'T +D",
(3.12b)

while discarding (3.8b) and its complex conjugate. From
(3.12) itis possible to construct a linear system following the
procedure that led us from (2.8) to (2.9), but such a linear
system would not produce the correct equation of motion
(3.2). In summary, there seems to be no room for Riccati
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equations in the SDYM case, in contrast to the chiral model.
This impossibility might root in the higher dimensionality
than 2 of the SDYM theory.

IV. GENERALIZED RICCATI EQUATIONS FOR SDYM

Since no Riccati equations seem possible for SDYM, we
will settle for (3.5) and (3.6) as a replacement of the Riccati
equations. We will call (3.5) the generalized Riccati equa-
tions, and describe a method to reconstruct the linear system
from them. Assume a solution I" of (3.5) can be factorized
into a product of two undetermined matrices

r=xy—!, (4.1)

with one more relation between X and Y to be imposed later,
so that each of them can be completely specified. Substitut-
ing (4.1) into (3.5a), we get

X,-TY, -I'(X;-TY;)=TB,Y-BX. (42)
We then use (2.6) to get rid of the only I'* term appearing in
(3.2), and obtain
(X, +BX+Y;)-T(X,+Y,+BY—-BY;)=0

(4.3)

Now we supply the missing relation between X and Y by
imposing

X, +BX+Y,=0, (4.4)
so that we get from (3.3)
X;:+Y,+B,Y-BY,=0. (4.5)

Equations (4.4) and (4.5) can be combined in a matrix form

ay + By 193 X
( 3  d,+B, —ﬁaf) <Y) =0 (4.62)
A similar maneuver on (2.5b) gives
(aZ+B‘ —% )(X)=o (4.6b)
—d; &, +B,+53;/\Y ' ’

Equations (3.3a) and (3.3b) can be simultaneously dia-

gonalized to become |

chiral model

linear system

Riccati equations BT,
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(8 + B, +(1/0)¢9— 0 )
d,+B,—0d,;
X+(1/0)Y)
(X oY - (4.7a)
(c? + B, —(1/0)8— 0 )
d, + B, +0d;
X—{—(l/a)Y)
( X—0oY ) (4.70)

where o = }[B + (B2 + 4)'/? ]. Comparing with the origi-
nal linear system (3.1), we find A = o or — 1/0, i.e., A is
either root of the equation A > = 84 + 1. Notice that to de-
rive the linear system (4.6) from (3.5), it has been necessary
to use the constraint (3.7), while in going from (2.8) to
(2.9), no constraint on I' is needed.

Conversely, to derive the generalized Riccati equations
(3.5) from the linear system (4.6) will also need help from
the constraint (3.7), as we will show in the following. Sup-
pose (§') and (§2) are two independent solutions of (4.6).
Define

r=X,C+X)(Y,C+7Y,)" ", (4.8)
where C is a constant matrix. Then a direct computation on
(4.8) yields
—pr—1)
CH+ Y, (Y,C+7Y,) ",

r,=IT; +(I,B,)+ (I'*

XY, ; — 4.9)

If T of (4.8) happens to satisfy the constraint (3.7), then
(4.9) becomes identical to (3.5a). Equation (2.6b) can be
similarly reproduced. Thus the constraint (3.7) is needed in
addition to the linear system (4.6) to return to the general-
ized Riccati equations (3.5).

To conclude, we have shown that the chiral model and
the SDYM theory differ from each other in regard to the
Riccati equation, and the situation can be summarized by
the following diagrams:

SDYM

linear system

N
@Q
&
S
QO

generalized

BT

N

Riccati equations

2L.-L. Chau, in Proceedings of Workshop on Vertex Operators in Mathemat-
ics and Physics, Berkeley, 10~17 November 1983; in Proceedings of the 13th
International Colloquium on Group Theoretical Methods in Physics, Mary-
land, 21-25 May, 1984.

3L.-L. Chau and H. C. Yen, “A unified derivation of Bicklund transforma-
tions for integrable nonlinear equations,” BNL preprint, 1986.
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In this paper finite-dimensional Lorentz covariant bifurcation equations are constructed and
their properties, solutions, and gradient structures are examined. The possible applications of
these ideas and techniques to elementary particle physics are considered.

I. INTRODUCTION

In the last few years extensive research was done on
bifurcations covariant with respect to the rotation group in
three dimensions and their applications in various physical
contexts. '™ In view of these efforts the study of Lorentz co-
variant bifurcations seems to be both natural and interesting
from physical and mathematical considerations.

First, from a mathematical point of view, the Lorentz
group is a simple noncompact group [as compared to O(3)
which is compact] and hence all its nontrivial finite-dimen-
sional representations are nonunitary, thus possibly intro-
ducing a new element in the analysis of the bifurcation equa-
tions. More important from a physical point of view is the
fact that the Lorentz group is the invariance group of all
local relativistic physical phenomena and hence covariant
bifurcations with respect to this group should govern all bi-
furcations of relativistic processes. In particular we wish to
point out that the production of new (elementary) particles
through a collision of other particles at relativistic velocities
can be viewed as a bifurcation process. Thus in this instance
the original (stable) state of the system (consisting of the
particles before the collision) becomes, above certain energy
threshold, unstable due to the collision and the system bifur-
cates to new states or particles. It follows then that the de-
tailed study of these Lorentz covariant bifurcations, which
are independent of the explicit form of the interaction, might
lead to better understanding of these processes, which goes
beyond those consisting of spin and energy alone.

The plan of the paper is as follows: in Sec. II we summa-
rize briefly the general setting for covariant bifurcations as
discussed by Sattinger'? and comment on the possible diffi-
culties in its application to noncompact groups. In Sec. III
the construction of Lorentz covariant bifurcation equations
is carried out and in Sec. I'V we present an explicit example of
these equations and their solutions. In Sec. V we prove that
Lorentz covariant bifurcations of the second order have a
gradient structure even though the corresponding represen-
tations are nonunitary. Some possible implications of these
techniques to the physics of elementary particles are consid-
ered in Sec. VI. Finally in the Appendix we show the need for
a minor modification in the formula for the Clebsch—-Gordan
coefficients of the Lorentz group.

Il. A SHORT REVIEW OF BIFURCATION THEORY WITH
SYMMETRY"2

We are considering the bifurcations of a nonlinear func-
tional equation G(u,A) = 0. Under proper conditions on
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G (A,u) we can reduce this equation at a bifurcation point
(Agstg) via the Lyapunov-Schmidt method to a finite-di-
mensional problem:

Fi(Av) =0, i=1..n, (1)

veR " and n = dim ker G, (44,u44). Expanding F(A4,v) in a
power series in v we obtain,

F(A,v) =4(A)v + By(4,v,v) + By (4,v,v,v) + -+ . (2)

On can infer then that if the original problem is covariant
with respect to a representation I" of a group G then the same
holds for each term in the expansion (2). Furthermore, since
B, (A,v,w) must be symmetric in v,w it follows that B, must
belong to the subspace of symmetric second-order tensors
which transform as I" under the action of G.

For the rest of this work we approximate F(A,v) by the
first two terms in (2) (obviously, if B, =0 one must consider
B,, etc.) and denote B, by B.

The construction and anlysis of second-order G-covar-
iant bifurcations proceeds as follows: first, we identify those
representations for which I" appears as a symmetric tensor in
the decomposition of I' X I'. Then to construct B explicitly
we can either use the Clebsh-Gordan coefficients of G or
apply the Lie generators of G directly on some “ground
state” of B. Furthermore, if I is irreducible it follows then
from Schur’s Lemma that 4(4) = AI. Once the solutions of

B(vww)+A4AA)v=0 (3)

have been found (usually there are several solutions) one
can infer the stability of each bifurcating state by introducing
the parametrization

A= —¢€ v=—¢f 4

and calculating the eigenvalues of J/ — A, where J is the Ja-
cobian of B at the solution. For € > 0, negative and positive
eigenvalues correspond then to stable and unstable subcriti-
cal branching states, respectively.

Although the results of bifurcation theory reviewed
above are rather general, proper care should be exercised in
their application to the Lorentz group since it is a noncom-
pact group. Due to this fact there exist some open mathemat-
ical questions as to whether the Fredholm alternative and
the Lyapunov-Schmidt procedure hold under these condi-
tions. While these problems should be addressed formally,
we would like to observe that from a physical point of view
the Lorentz group is a local symmetry group. Accordingly,
in our analysis of the bifurcation equations we have to con-
sider only a proper neighborhood of the identity in this
group. It is our contention then that under these restrictions
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the bifurcation theory as developed in Refs. 1 and 2 holds for
Lorentz covariant bifurcations.

Another possible source of trouble in applying the gen-
eral theory to the finite-dimensional representations of the
Lorentz group is that these are nonunitary.

However, a close examination of the theory developed
in Ref. 1 (and Theorem 4.1 in particular) shows that the
unitarity assumption is not needed and we can apply these
results in our context.

. CONSTRUCTION OF LORENTZ COVARIANT
BIFURCATION EQUATIONS

We first observe that there are two ways to characterize
the spinor representations of the (proper) Lorentz group
(which we denote henceforth by G.) These are (k,n), and
(Jo»J1). The first of these notations relates to the spinor con-
tents of the representation while the second relates to its
decomposition with respect to O(3).°

Lemma I: Let I = (k,n), be an irreducible representa-
tion of G and let F(4,v) be covariant with respect to I, then
B=0 unless k,n are even.

Proof: For B to be different from zero it is necessary (but
not sufficient) for I" to appear in the decomposition of I' X I".
However,

FxF=Zea(k’,n’)x, (5)
where
k'=0,.2,.,2k, n'=02,..2n.

Hence, we infer that (k,n), appears in this decomposition
only if k,n are even.

Proposition 1: If T = (k,n),, then B does not vanish if
and only if k,n and (k + n)/2 are even integers.

Proof: In view of Lemma 1 I' appears (once) in the
decomposition of " X I under the conditions of this proposi-
tion. We must prove, however, that it appears as a symmetric
tensor. To show this we denote the states of I" by x (k,n, j,m).
The states of a representation (k',n’),, which appear in the
decomposition of I' X T, are then given by

x(k'\n, j,m)

— k' g,m
- E H konyji,m ko, my

x(k’n,jl’ml)x(k’n:j21m2)’ (6)

where the H ’s are the Clebsch—-Gordan (CG) coefficients of
G. Hence I appears as a symmetric tensor in the decomposi-
tion if and only if

H k.njm

k.nj,my;k,nj,,m,

=H k,ngj,m ( 7 )

ks, myk,ngj,m,
However, it is well known that the CG coefficients of G are
given by®7 (see, however, the discussion in the Appendix)

k,nj,m
Hy

P kg g, my

= (—D* 2k + D) (n+ D]y jo))

... k1/2 ”1/2 I
x( nf"’f’fm) k2 ny/2 ot (8)
pe k/2 n/2

where a is symmetric in j,, j,. Hence, using the symmetry
properties of the 3j and the 9j symbols® we infer that (7) is
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trueifand onlyif ( — 1)+ ™/2 = 1, which proves our state-
ment.

We now note that the explicit form of B is known if the
CG coefficients of G are known. In fact for I" = (k,n), we
have

B(jm) =ZH:;‘::n‘;]'z,mzx(jl!ml)x(jZ’mZ) 9)

(for brevity we dropped the designation of the representa-
tion and shall do so henceforth whenever its meaning is
clear). However, since the actual calculation of the H’s is
tedious we describe a direct method to do so for irreducible
spinor representations of the form (n,n),=(0,n + 1), i.e,,
the ladder representations whose decomposition with re-
spect to O(3) contains the irreducible representations
J=0,1,...,n. (The method to be described can be applied to
other spinor representations with minor modifications.)
Proposition 2: The action of the operator

F*= —(B}+B}+B%)=F_F,+F—J, (10)
on x(k,n, j,m) (here k,n are arbitrary) is given by

Fx(k,n, jm) = (j; —j5 +7° +J+ Dx(kn,jym).  (11)

Proof: The proof of this proposition proceeds through
direct (and long) computation using the results in Ref. 6
regarding the matrix elements of the operators ¥, F_, and
F,.

At this point we would like to note that the operator F?2
seems to have an intrinsic importance from a group theoreti-
cal point of view. Thus, as is obvious from (11), any state
x(k,n, j,m) of (k,n), is an eigenstate of F%. Moreover, the
corresponding eigenvalues are independent of m. However,
we found no reference to this operator in the classical litera-
ture on G.

We start the construction of the quadratic form B( j,m)
with B(0,0). To this end we observe that the representation
Jj =0 appears only in the decomposition of jXj. Hence we
attempt to write

B(0,0) = 2": i a( jm)x(jm)x(j,—m). (12)

J=0m=—j
To determine the coefficients a( j,m) we use the fact that
J,.B(0,0)=0 (13)

[or equivalently J_B(0,0) = 0]. This yields after some sim-
ple algebra

n j
B(0,0) = 3 b()) 3 (=D "x(jmx(j,—m), (14)

J=0 m= —j
where b( j) are constants which depend on only. To deter-
mine these coefficients we now apply F? to B(0,0) using
(11) withj, =0,/, =n+1,

F?B(0,0) = — (n* + 2n)B(0,0). (15)

Evaluating the left-hand side of this equation by direct appli-
cation of F2 + F_F_ — J, to (14) yields a system of linear
equations for 4( j) (note that F? is not a derivation) which
when solved determines B(0,0). The other components of B
can be obtained then by repeated aplications of ¥, and J_ or
F_andJ,.

In order to solve the second-order bifurcation equations
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we shall use the following results, which are completely anal-
ogous to those for O(3).!

Lemma 2: The states x( j,m) in an irreducible spinor
representation of G can be chosen so that

x(jym)=(—1)"x(j, —m). (16)

Proof: An irreducible spinor representation of G can be
decomposed into irreducible representations of O(3), each
of which appears once. It was shown by Sattinger' that due
to the uniqueness of x( j,m) in an irreducible representation
of O(3) it is possible to satisfy condition (14). This proves
the lemma.

Proposition 3: Let the reduced second-order bifurcation
equations for (n,n);

B(jm) +Ax(jm) =0 (17)
be restricted to the subclass of solutions with the symmetry

x(jm) = (—1)"x(j, —m), (18)
then

B(j,—m)=(—1)"B(jm), (19)

i.e., the bifurcation equations for m <0 are redundant.
Proof! From the previous lemma it follows that B( j,m)
can be chosen so that
B(jm) = (= 1)"B(j, —m). (20)
However, by construction B( j,m) for (n,n), is a qua-
dratic form with real coefficients, hence
B(jm)(x(j,m)) = B(jm)(Z(jm)). (21)
But from Lemma 2 and condition (18) we obtain

x(jm) =(—1D"x(j, —m) =x(j,m). (22)

Thus,
B(j, —m){(x(jm)) = ( — D)"B(jm)(x(jm))
= (— D™B(j,m)(jx(jm))

= ( — D)"B(j,m)(x(j,m)), (23)
which is the desired result.

Finally we note that when T is reducible the additional
considerations that are necessary to construct and solve the
bifurcation equations are completely analogous to the O(3)
case’ and will not be discussed further here.

Remark: The representations ( j, j + 1) of G are equiva-
lent to irreducible representations of O(3). It follows then
that the construction of covariant bifurcation equations
which are related to these representations proceeds exactly
as in the O(3) case.

IV. AN EXAMPLE

In this section we construct and solve explicitly the bi-
furcation equations for (2,2),. To begin with we apply F? to
B(0,0) and use (9) and (11). We obtain the following equa-
tions for b( j):

b(0) =2b(1), (1) +b(2) =0. (24)
Hence, up to a multiplicative constant, B(0,0) in this case is
given by

B(0,0) =2x*(0,0) +x%(1,0)
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—2x(LDx(1, — 1) — 2x(2, — 2)x(2,2)
+ 2x(2,1)x(2, - 1) — x%(2,0).

The other components of B can now be evaluated by repeat-
ed application of F, and J_,

B(1,1) = —2vV3x(1, — 1)x(2,2) 4+ J6x(1,0)x(2,1)
—v2x(1,1)x(2,0) + 2x(0,0)x(1,1),

B(1,0) = — J6x(1, — 1)x(2,1) + 2v2x(1,0)x(2,0)
—6x(1,1)x(2, — 1) + 2x(0,0)x(1,0),

B(l,— 1) = —2V3x(1,1)x(2, — 2) + 6x(1,0)x(2, — 1)

—v2x(1, — 1)x(2,0) + 2x(0,00x(1 — 1),

B(2,2) = —2x(2,2)[v2x(2,0) 4+ x(0,0) ] + v3x%(2,1)
+V3x*(1,1),

B(2,1) = —2V3x(2, — 1)x(2,2) + v2x(2,0)x(2,1)

— 2x(0,0)x(2,1) + 6x(1,0)x(1,1),
B(2,0) = —2v2x(2, — 2)x(2,2) — v2x(2, — 1)x(2,1)
+ v2x3(2,0) — 2x(0,0)x(2,0)

+ \/—ZX(L - l)x(lyl) + V/zxz(lyo)s
B(2,— 1) = —2v3x(2, — 2)x(2,1) +v2x(2, — 1)x(2,0)

B(2,—2) = —2x(2,—2)[v2x(2,0) +x(0,0)]
+V3x3(2, — 1) +V3x3(1, — 1).

Solving  the second-order bifurcation equations
B(v,v) + Av = 0 under the restrictions of Proposition 3 we
found the following four solutions for (2,2), [note that for
an irreducible representation A(4) = Al in (21)]. The non-
zero components of these solutions are

(1) x(0,0) = —4/2; (2)x(0,0) =A1/6,
x(2,0) = — (V2/DA; (3,4) x(2,2) = + (V3/6)A,
x(2,0) = (vV2/6)A, x(0,0) = A /6.

To determine the stability of these bifurcating solutions we
let A = 1 and evaluate the eigenvalues of J-I, where J is the
Jacobian of B(v,v) at the solution. It is interesting to note
that for all the four solutions given above these eigenvalues
are ( — 3, — 2,0) (the corresponding multiplicities are 3, 1,
5). Hence if we introduce the scaling A= —¢,
x(jm) =e€ez(jm) then for €>0 we obtain subcritical
branching with one neutral and two stable modes. (From a
physical point of view the most natural interpretation of A is
as the total energy of the system.)

V. GRADIENT STRUCTURE OF THE BIFURCATION
EQUATIONS

In this section we show that for ¥ = (n,n), there exists a
Lorentz invariant polynomial p(x( j,m)) so that
__ 9
T ax( Jjsm)
ifthe B( j,m) satisfy the condition (19). To prove this asser-
tion we note that p has to be a third—order polynomial in

B(j,m) (25)
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x( j,m). Taking into account the invariance of p with respect
to O(3) it is easy to infer that p must be of the form

d(j) 3 (= D"BUmE(, —m).  (26)

J

M:

p:

j=0

To determine the coefficients d( j) we use the invariance of
p, which implies that F;(p) = 0. This immediately yields
d(j)=d(j~—1),j=1,..,ni.e., up to a multiplicative con-
stant,

p=3
j=0m

M‘\,

(— 1)"B(jm)x(j, —m). 27)

—J

It

Using (9) and a little algebra then yields

p=3 > (=1OrHp

Jidzds mymymy
Xx(Jjpm)x(jamy)x(jms). (28)

A careful analysis of this expression using the symmetry
properties of the H’s (Ref. 8) and (A7) shows that the coef-
ficient of

x(Jpm)x( jp.m;)x( jz,m3)
(for fixed j;,m,, i = 1,2,3) is given by

6(— D™HT
Hence when we differentiate p with respect to x( j;,m5) we
obtain

1 dp - . .

—_—— = (=1)™ H»—™  x(j.m ,

3 aemy D7, i X umOx )
= (= 1)"B(js, — m3) = B(j;m3)

[where we took into account the fact that x ( j,,m,)x( j,,m,)

appears twice in this summation].
We verified this result explicitly for (2,2),.

VI. POSSIBLE PHYSICAL APPLICATIONS

To summarize the results of this paper from a physical
point of view we observe that without any reference to the
explicit form of the interaction involved in the bifurcating
process we were able to deduce, using Lorentz covariance
alone, the number of bifurcating modes and their stability. It
follows then that if the proposed application of bifurcation
theory to colliding beams of particles is correct one should be
able to predict a priori certain experimental facts which were
derived so far on a phenomenological basis only.

The major obstacle for such a direct application is that
particles at relativistic speeds are “dressed particles.” Thus it
is not a priori clear that the same representation which is
related to a given particle at low energies is appropriate for
its description at high energies. In particular, one should not
rule out the use of the ladder representations of G for the
description of bifurcating processes involving elementary
particles.’

A possible objection to this point of view is that in treat-
ing elementary particles one should consider the quantized
fields rather than the classical equations of motion. How-
ever, regardless of the paradigm one adopts for the study of
these bifurcating processes G covariance must hold and our
calculations should be applicable to it. (The same applies to
any physical process which is G covariant.)

Another open question that is related to this bifurcation
theory is the determination of the isotropy group for the
bifurcating modes [this is open even for O(3) ]. The identifi-
cation of such an isotropy group should in principle lead to
additional quantum numbers which characterize the bifur-
cating states.

APPENDIX: ON THE CG COEFFICIENTS OF G

The CG coefficients for the spinor representations of the
Lorentz group appear in various references (see Refs. 6 and
7). The one due to Gel’fand et al.® is equivalent to

J
nj,m k ’ ’ ’ 7|2 k kz k
H::!;{I’leimﬁkz,’IZ‘jzmz = z (_1ml +m2;l’m —m; —m, ],m)(—',m{;—,mé _’m{ +m£)
ity 2 2 2 2
n . .| n Nk, A k, ,n R
X(j”nl =2m, —m; 7’m —hmy — m2)<?1,m1;71,m, —my|j,m 1)(72,’"2;?2:’”2 —nm, Jz’mz)’
(A1)
while the other’ is given by
k/2 n/2 j,
HEmm o, = (— DETP2 [+ D) (n + D (2, 4+ D (2, + DIV Gum jama| jym) 1k2/2 np/2 o (A2)
k/2 n/2 j

However, it is easy to show that these two formulas agree up
to an unimportant factor of ( — 1)¢, where ¢ depends only
onk,,n;, i = 1,2,3. We contend, nevertheless, that in both of
these equivalent formulas a factor of

a(jl!jzyj) = ( — 1)(jl+jz —J/2

should be inserted on the right-hand side.

(A3)
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To begin with we observe that (qualitatively) both
(Al) and (A2) are incompatible with the matrix elements
of the Lie algebra of G as they appear in Refs. 6 and 7. In fact,
according to (A1) and (A2) the CG coefficients of G are all
real. Hence the states of I'’ in the decomposition of I' X T"
should all appear with real coefficients. However, when one
applies F_ or F; on such a state of I’ one obtains, in general
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(i.e., when j, #0), an expression with both real and complex
coefficients. Such a state cannot be a multiple of the one
constructed using (Al) or (A2).

More concretely we computed the Clebsch—Gordan co-
efficients for the ground state B(0,0) of (2,2), in the decom-
position of (2,2}, X (2,2), using both (Al) and (A2) and
found in both cases that

B(0,0) = (172v3){2x%(0,0) + 2x(1,1)x(1, — 1)
—x%(1,0) — 2x(2,2)x(2, — 2)
+2x(L,Dx(1, — 1) — x*(2,0) }. (A4)

However, (A3) is incorrect. In fact from Refs. 6 and 7 we
infer that

F,_B(0,0) = (4/V3)B(1,1). (A5)
But if we apply F, to (A3) we obtain
B(1,1) = 6x(0,0)x(1,1). (A6)

This expression for B(1,1) is wrong since from (Al) we
obtain, e.g.,

Hé:;;l, =14
i.e., a term with x(2,2)x(1, — 1), should appear in (A6).

Similarly if we construct the highest weight B(2,2) of
(2,2), using (A1) we obtain

B(2,2) = (172v3){ — 2x(0,0)x(2,2) + 2v2(2,0)x(2,2)
+v3x?(1,1) —v3x*(2,) 1.
However, the application of F__ on this state yields
F.B(2,2) =4x(1,1)x(2,2),

rather than zero as it should.

By a little algebra one finds that the required adjustment
in (A1) [or (A2)] for (2,2), is given by (A3). We conjec-
ture, however, that this is true for all spinor representations
of G since (A3) is independent of (k,n). We in fact verified
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this statement directly for (4,4),. The general proof of this
conjecture will require a separate publication (which is out-
side our main thrust in this paper). The general formula for
the CG coefficients of G is given therefore by

H G m s

= ( _ 1)(k+n+j|+j:7j:)/z[(k+ 1)()’1 + 1)(2].1 + 1)
X (2, + D12 jym ; jomy| jm)

k,/2 nJ/2
X1k, /2 1y /2 (A7)
k72 n/2 j

We would like to note, however, that the main results of this
paper are independent of the proposed adjustment in (Al).
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Cylindrical group and massless particles

Y. S. Kim

Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

E. P. Wigner

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

(Received 30 September 1986; accepted for publication 31 December 1986)

It is shown that the representation of the E(2)-like little group for photons can be reduced to
the coordinate transformation matrix of the cylindrical group, which describes movement of a
point on a cylindrical surface. The cylindrical group is isomorphic to the two-dimensional
Euclidean group. As in the case of E(2), the cylindrical group can be regarded as a contraction
of the three-dimensional rotation group. It is pointed out that the E(2)-like little group is the
Lorentz-boosted O(3)-like little group for massive particles in the infinite-momentum/zero-
mass limit. This limiting process is shown to be identical to that of the contraction of O(3) to
the cylindrical group. Gauge transformations for free massless particles can thus be regarded

as Lorentz-boosted rotations.

I. INTRODUCTION

In their 1953 paper,' Inonu and Wigner discussed the
contraction of the three-dimensional rotation group [or
O(3)] to the two-dimensional Euclidean group [or E(2)].
Since the little groups governing the internal space-time
symmetries of massive and massless particles are locally iso-
morphic to O(3) and E(2) respectively,’ it is quite natural
for us to expect that the E(2)-like little group is a limiting
case of the O(3)-like little group.®

The kinematics of the O(3)-like little group for a mas-
sive particle is well understood. The identification of this
tittle group with O(3) can best be achieved in the Lorentz
frame in which the particle is at rest.” In this frame, we can
rotate the direction of the spin without changing the momen-
tum. Indeed, for a massive particle, the little group is for the
description of the spin orientation in the rest frame.

The kinematics of the E(2)-like little group has been
somewhat less transparent, because there is no Lorentz
frame in which the particle is at rest. While the geometry of
E(2) can best be understood in terms of rotations and trans-
lations in two-dimensional space, there is no physical reason
to expect that the translationlike degress of freedom in the
E(2)-like little group represent translations in an observable
space. In fact, the translationlike degrees of freedom in the
little group are the gauge degrees of freedom.”* Therefore, in
the past, the correspondence between the E(2)-like little
group and the two-dimensional Euclidean group has been
strictly algebraic.

In this paper, we formulate a group theory of a point
moving on the surface of a circular cylinder. This group is
locally isomorphic to the two-dimensional Euclidean group.
We show that the transformation matrix of the little group
for photons reduces to that of the coordinate transformation
matrix of the cylindrical group. The cylindrical group there-
fore bridges the gap between E(2) and the E(2)-like little
group.

As in the case of E(2), we can obtain the cylindrical
group by contracting the three-dimensional rotation group.
While the contraction of O(3) to E(2) is a tangent-plane
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approximation of a spherical surface with large radius,’ the
contraction to the cylindrical group is a tangent-cylinder
approximation. Using this result, together with the fact that
the representation of the E(2)-like little group reduces to
that of the cylindrical group, we show that the gauge degree
of freedom for massless particles comes from Lorentz-boost-
ed rotations.

In Sec. II, we discuss the cylindrical group and its iso-
morphism to the two-dimensional Euclidean group. Section
I11 deals with the E(2)-like little group for photons and its
isomorphism to the cylindrical group. It is shown in Sec. IV
that the cylindrical group can be regarded as an equatorial-
belt approximation of the three-dimensional rotation group,
while E(2) can be regarded as a north-pole approximation.
In Sec. V, we combine the conclusions of Sec. IIT and Sec. IV
to show that the gauge degrees of freedom for free massless
particles are Lorentz-boosted rotational degrees of freedom.

Il. TWO-DIMENSIONAL EUCLIDEAN GROUP AND
CYLINDRICAL GROUP

The two-dimensional Euclidean group, often called
E(2), consists of rotations and translations on a two-dimen-
sional Euclidian plane. The coordinate transformation takes
the form

x'=xcosa—ysina + u,
ysina + 1)
y =xsina+ycosa+v.
This transformation can be written in the matrix form as

x' cosa —sina ullx
y|=|sina cos vty
1 0 0 1]L1
The three-by-three matrix in the above expression can be
exponentiated as
E(u,v, ) = exp[ — i(uP, 4+ vP,) Jexp( — iaL,),
(2.3)

where L, is the generator of rotations, and P, and P, generate
translations. These generators take the form

(2.2)
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0 —i 0
L,=|i o0 of,
o0 0 (2.4)
0 0 | 0 0 O
P =10 0 0fj, PjO 0 1|,
0 0 O 0 0 0
and satisfy the commutation relations
[P,P,] =0, [L,P]=iP, [L,P,]= —iP, (2.5)

which form the Lie algebra for E(2).

The above commutation relations are invariant under
the sign change in P, and P,. They are also invariant under
Hermitian conjugation. Since L; is Hermitian, we can re-
place P, and P, by

0= — (), G=—(P), (2.6)
respectively, to obtain
[Qan] =0, [L3,Q1] :iQp [L3’Q2] = “‘in-
2.7)

These commutation relations are identical to those for E(2)
given in Eq. (2.5). However, Q, and Q, are not the genera-
tors of Euclidean translations in the two-dimensional space.
Let us write their matrix forms:

0 0 0 0 0 0
0,=l0 o of, g,=[0 0 o]. (2.8)
i 0 0 0 i 0

Here L, is given in Eq. (2.4). As in the case of E(2), we can
consider the transformation matrix

Clup,a) = C(0,0,a)C(u,v,0), (2.9)

where C(0,0,a) is the rotation matrix and takes the form

cosa —sina O
C(0,0,a) =exp( —iaL;) =|sina cos a 0f,
0 0 1
(2.10)
1 0 0
C(uw,0) =exp[ —i(uQ, +v@,)}]=|0 1 O
u v 1
2.11)

The multiplication of the above two matrices results in the
most general form of C(u,v,a). If this matrix is applied to
the column vector (x,y,z), the result is

cosa —sina Offx xcosa —ysina
sina cosa Olly|=|xsina+ysina
u v 1]lz Z+ ux + vy

This transformation leaves (x? + y*) invariant, while z can
vary from — o to + oo. For this reason, it is quite appro-
priate to call the group of the above linear transformation the
cylindrical group. This group is locally isomorphic to E(2).

If, for convenience, we set the radius of the cylinder to be
unity,

(x* +3%) =1, (2.13)
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then x and y can be written as
x=cos¢, y=sindg, (2.14)

and the transformation of Eq. (2.12) takes the form

cosa —sina O]f[cosé cos(¢ +a)
sin o cos @ Offsing | = sin(¢ + a)
u v 1 z

z+ucosg +vsing
(2.15)

We shall see in the following sections how this cylindrical
group describes gauge transformations for massless parti-
cles.

Ill. E(2)-LIKE LITTLE GROUP FOR PHOTONS

Let us consider a single free photon moving along the z
direction. Then we can write the four-potential as

A*(x) = A0, (3.1)
where

A = (4,,42,454,).
The momentum four-vector is clearly

= (0,0,w,0). (3.2)

Then, the little group applicable to the photon four-potential
is generated by

0O —7 0 O
7= i 0 0 0
1o o o0 of
0 0 0 0
(3.3)
0 0 —i 0 0 0 0
0 0 0 0 0 0 —i i
N = s =
! i 0 0 0 N, 0 i 0 0
i 0 0 0 0 i 0 0
These matrices satisfy the commutation relations:
[J3,N1] =iN2: [J3’N2] - _iN]! [N19N2] =0’
(3.4)

which are identical to those for E(2). From these genera-
tors, we can construct the transformation matrix:

D(up,a) = D(0,0,a)D(u,0,0),
where
D(u,v,0) =exp[ — i(uN, + vN,)],

(3.5)

D(0,0,a) = R(a) = exp[ — iaJ;] .

We can now expand the above formulas in power series, and
the results are

cosa —sina 0 O
sin o cos a 0 0
R = , 3.6
(@) 0 0 1 0 (3-6)
0 0 0 1
and
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D(u,v,0)

1 0 —u u

|0 1 —v

e v 1= +P) 2 (2 +v%)/2
u v —WHV/2 1+ W+ D)2

(3.7)

When applied to the four-potential, the above D matrix per-
forms a gauge transformation,* while R(a) is the rotation
matrix around the momentum.

The D matrices of Eq. (3.5) have the same algebraic
property as that for the £ matrices discussed in Sec. IT. Why,
then, do they look so different? In the case of the O(3)-like
little group, the four-by-four matrices of the little group can
be reduced to a block diagonal form consisting of the three-
by-three rotation matrix and one-by-one unit matrix.? Is it
then possible to reduce the D matrices to the form which can
be directly compared with the three-by-three E or C matrices
discussed in Sec. II?

One major problem in bringing the D matrix to the form
of the E matrix is that the D matrix is quadratic in the  and v
variables. In order to attack this problem, let us impose the
Lorentz condition on the four-potential:

d
Z(4#(x)) = p"4, (x) =0, (3.8)
Ixt
resulting in A; = A,. Since the third and fourth components
are identical, the N, and N, matrices of Eq. (3.3) can be
replaced, respectively, by

0O 0 0 O 0O 0 0 O
0O 0 0 O 0 0 0 O
M=, 0 0 o}’ N = 0 i 0 O
i 0 0 O 0 i 0 O
(3.9)
At the same time, the D(u,v,0) of Eq. (3.7) becomes
1 0 0 O
1 0 0
D(u,w,0) = 3.1
(1,0,0) by 10 (3.10)
u v 0 1

This matrix has some resemblance to the representation of
the cylindrical group given in Eq. (2.11).°

In order to make the above form identical to Eq. (2.11),
we use the light cone coordinate system in which the combi-
nations x, y, (z + £)/v2, and (z — t)/v2 are used as the coor-
dinate variables.® In this system the four-potential of Eq.
(3.1) is written as

At = (A, Ay (Ay + A VI, (A3 — A /VI).  (3.11)

The linear transformation from the four-vector of Eq. (3.1)
to the above expression is straightforward. According to the
Lorentz condition, the fourth component of the above
expression vanishes. We are thus left with the first three
components.

During the transformation into the light-cone coordi-
nate system, J, remains the same. If we take into account the
fact that the fourth component of 4# vanishes, N, and N,
become
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0O 0 0 O 0O 0 0 O
1]0 0 0 O 110 0 0 O
M=l 0 0 of" ¥ 5 o i 0 o
0 0 0 O 0 0 0 O
(3.12)
As a consequence, D(u,v) takes the form
1 0 0 0
0 1 0 0O
D(u,0,0) = s .13
(,0,0) wv2 v/vZ 1 0 (3.13)

0 0 0 1

and R (a) remains the same as before. It is now clear that the
four-by-four representation of the little group is reduced to
one three-by-three matrix and one trivial one-by-one matrix.
If we use J,, N,, and IVZ for the three-by-three portion of the
four-by-four J;, N,, and N, matrices, respectively, then

Jy=L,, N,=/2)Q,, N,=(1/V2)Q, (3.14)

Now the identification of E(2)-like little group with the cy-
lindrical group is complete.

IV.THE CYLINDRICAL GROUP AS A CONTRACTION OF
0(3)

The contraction of O(3) to E(2) is well known and
discussed widely in the literature.’ The easiest way to under-
stand this procedure is to consider a sphere with large radius,
and a small area around the north pole. This area would
appear like a flat surface. We can then make Euclidean trans-
formations on this surface, consisting of translations along
the x and y directions and rotations around any point within
this area. Strictly speaking, however, these Euclidean trans-
formations are SO(3) rotations around the x axis, y axis, and
around the axis which makes a very small angle with the z
axis.

Let us start with the generators of O(3), which satisfy
the commutation relations:

[Li,L;] = iepuLy. (4.1)
Here L; generates rotations around the north pole , and its

matrix form is given in Eq. (2.4). Also, L, and L, take the
form

0 0 0 0 0 7/
L,=|0 0 —i], L,=|0 0 0 (4.2)
0 i O —i 0 0

For the present purpose, we can restrict ourselves to a small
region near the north pole, where z is large and is equal to the
radius of the sphere R, and x and y are much smaller than the
radius. We can then write

X 1 0 0 x
y|l=ij0 1 0 yl.
1 0 0 1/R}i:z

The column vectors on the left- and right-hand sides are,
respectively, the coordinate vectors on which the E(2) and
O(3) transformations are applicable. We shall use the nota-
tion 4 for the three-by-three matrix on the right-hand side.
In the limit of large R,

(4.3)
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Ly=AL,4 ",
P, = (1/R)AL,A ~",
P,= — (1/R)AL 4 ~".

(4.4)

This procedure leaves L invariant. However, L, and L, be-
come the P, and P, matrices discussed in Sec. II. Further-
more, in terms of P,, P, and L, the commutation relations
for O(3) given in Eq. (4.1) become

[Ly,P] =iP,, [L;P,] = —iP,
[P,P,] = —i(1/R)’L,.

In the large-R limit, the commutator [P, P,] vanishes, and
the above set of commutators becomes the Lie algebra for
E(2).

We have so far considered the area near the north pole
where zis much larger than (x2 + y*)'/2, Let us next consid-
er the opposite case, in which (x* + y?)!/? is much larger
than z. This is the equatorial belt of the sphere. Around this
belt, x and y can be written as

(4.5)

x=Rcos¢, y=Rsing. (4.6)
We can now write
cos ¢ 1/R 0 Offx
sing |=1] 0 1/R  O}lly|, (4.7)
z 0 0 1ilz

to obtain the vector space for the cylindrical group discussed
in Sec. II. The three-by-three matrix on the right-hand side
of the above expression is proportional to the inverse of the
matrix 4 given in Eq. (4.3). Thus in the limit of large R,

Ly=4""'L;A,

O,= — (1/R)A 7 'L,A,

0,= (1/R)A ~'L A.
In terms of L,, Q,, and Q,, the commutation relations for
O(3) given in Eq. (4.1) become

[L5,01] = iQ,, [L3,Q2] = —iQ,,

[Q1Q.] = —i(1/R)’L,, (4.9)
which become the Lie algebra for E(2) in the large-R limit.

The contraction of O(3) to E(2) and to the cylindrical
group is illustrated in Fig. 1.

(4.8)

V. E(2)-LIKE LITTLE GROUP AS AN INFINITE-
MOMENTUM/ZERO-MASS LIMIT OF THE O(3)-LIKE
LITTLE GROUP FOR MASSIVE PARTICLES

If a massive particle is at rest, the symmetry group is
generated by the angular momentum operators J,, J,, and J;.
If this particle moves along the z direction, J; remains invar-
iant, and its eigenvalue is the helicity. However, what hap-
pens toJ, and J,, particularly in the infinite-momentum lim-
it?

In order to tackle this problem, let us summarize the
results of the preceding sections. The generators of the E(2)-
like little group can be reduced to those of the cylindrical
group. The cylindrical group can be obtained from the three-
dimensional rotation group through a large-radius approxi-
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Px -Py
Qy
R R
X Y
Rotation Rotation
around around
y axis X axis

FIG. 1. Contraction of the three-dimensional rotation group to the two-
dimensional Euclidean group and to the cylindrical group. The rotation
around the z axis remains unchanged as the radius becomes large. In the
case of E(2), rotations around the y and x axes become translations in the x
and — p directions, respectively, within a flat area near the north pole. In
the case of the cylindrical group, the rotations around the y and x axes result
in translations in the negative and positive z directions, respectively, within
a cylindrical belt around the equator.

mation. Therefore if the boost matrix takes a diagonal form
as in the case of Eq. (4.3) or Eq. (4.7), we should be able to
obtain &, and N, by boosting J, and J,, respectively, along
the z direction.”

Indeed, in the light-cone coordinate system, the boost
matrix takes the form

1 0 O 0
01 0 0
= 1
B(P) 0 0 R 0| -1
0 0 0 1/R
with
1/2
R= (122"
1-5

where 3 is the velocity parameter of the particle. Under this
boost, J; will remain invariant:

J,=BJB "=, (5.2)

Here J, and J, in the light-cone coordinate system take the
form

[0 0 0 0]
le_l_ 0 0 —17 ’
v2 |0 i 0 0
0 —/ 0 0]
(5.3)
[0 0 i —i]
1 0 0 0 0
J2=— .
vl —i 0 0 O
) 0 0 0 ]

If we boost this massive particle along the z direction, the
boosted J, and J, become
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North Pole R—-0 E(2)
Equatorial
0(3) Belt Isomorphic
on Sphere R Y 5
I Cylindrical g
Group &
E
2
Identical Identical
” R—® .
Little Group Little Group|
m#0,8=0 [ g../1*B m=0,B=
-8

FIG. 2. Here are E(2), the E(2)-like little group for massless particles, and
the cylindrical group. The correspondence between E(2) and the E(2)-like
little group is isomorphic but not identical. The cylindrical group is identi-
cal to the E(2)-like little group. Both E(2) and the cylindrical group can be
regarded as contractions of O(3) in the large-radius limit. The Lorentz
boost of the O(3)-like little group for a massive particle at rest to the E(2)-
like little group for a massless particle is exactly the same as the contraction
of O(3) to the cylindrical group. The radius of the sphere in this case can be
identified as ((1 + )/ (1 — B))"/>

0 0 0 0
1 ]o0 0 —i/R iR
P B_1=— ’
1 =8/, vilo iR 0 0
0 —i/R 0 0
(5.4)
[0 0 i/R —iR
1 0 0 0 0
J,=BJB " '= —
2 2 vil—-iR 0 0 0
| /R 0 0O 0

Because of the Lorentz condition, the iR terms in the fourth
column of the above matrices can be dropped. Therefore, in
the large-R limit which is the limit of large momentum,

N,= —(I/R)J,, N,=(1/R)J], (5.5)

where NV, and NV, are given in Eq. (3.12). This completes the
proof that the gauge degrees of freedom in the E(2)-like
little group for photons are Lorentz-boosted rotational de-
grees of freedom. The limiting process is the same as the
contraction of the three-dimensional rotation group to the
cylindrical group.
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VI. CONCLUDING REMARKS

The isomorphism between the two-dimensional Euclid-
ean group and the little group for massless particles is well
known and well understood. However, the isomorphism in
this case does not mean that they are identical. We have
shown in this paper that the E(2)-like little group can be
reduced to the identity group and the cylindrical group
which is isomorphic to E(2). As in the case of E(2), we can
obtain the cylindrical group by contracting the three-dimen-
sional rotation group. This contraction procedure is identi-
cal to the Lorentz boost of the O(3)-like little group for a
massive particle at rest to the E(2)-like little group for a
massless particle. The result of the present paper is summar-
ized in Fig. 2.
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The Casimir elements of the P-type Lie superalgebras are investigated. Depending on the class
of algebras under consideration either there do not exist any nontrivial Casimir elements at all
or else the Casimir elements are highly degenerate. Basic to the investigation is a lemma about
invariant supersymmetric multilinear forms on a finite-dimensional module over a Lie
superalgebra. Some comments on the Cartan subalgebras of a Lie superalgebra are also
included. An Appendix provides some information on multilinear algebra with e-commuting

scalars.

I. INTRODUCTION

The present work is one more in a series of papers'™
dealing with the Casimir elements of Lie superalgebras.*’
Once the cases of the general linear, the special linear, and
the orthosymplectic Lie superalgebras have been discussed
in some detail (see also Refs. 6-13), we now turn to the so-
called strange classical Lie superalgebras. A special class of
Q-type algebras has already been dealt with in Ref. 14, and
some partial results on P-type and Q-type algebras have been
obtained in Ref. 15. In an as yet unpublished investigation,
the author himself has considered the simple Q-type alge-
bras, and in Ref. 2 the P-type algebras have been touched
upon.

To remind the reader of the findings in the P-type case,
let us first fix our notation (see Sec. IV for more details). The
“proper” P-type algebras, i.e., those whose Lie algebra is
isomorphic to sl(n), will be denoted by P(n — 1). Closely
related to these are the algebras which we denote by GP(n)
(Ref. 15) and whose Lie algebra is gl(#n). Formally they can
be obtained by adjoining a grading derivation to P(n — 1),
geometrically they arise as the invariance algebra of a nonde-
generate odd supersymmetric bilinear form. The algebra
P(n — 1) is the commutator algebra of GP(n).

The preliminary results for the P-type algebras are
somewhat surprising: All attempts to construct nontrivial
Casimir elements for these algebras have failed . A standard
technique, which has been successful in all other cases, only
produced the zero Casimir element.>'> Moreover, an explic-
it investigation showed that for »>3 the GP(n) and the
P(n — 1) algebras have no nontrivial Casimir elements of
order <4 (for n = 1,2, these algebras are degenerate and
hence these cases were excluded).

Thus the question arose” whether the P-type algebras
have any nontrivial Casimir elements at all. In the present
work we are going to answer this question as follows. The
GP(n) algebras do not have any nontrivial Casimir ele-
ments. In the P(n — 1) case, we characterize the Casimir
elements without constant term by certain symmetric poly-

) Part of this work has been presented at the Conference on Differential
Geometric Methods in Theoretical Physics, Clausthal, West Germany,
July 1986.
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nomials in 7z indeterminates and derive several necessary
conditions which these Casimir elements must satisfy {for
example, they are Z homogeneous of degree — n and the
order of the nonzero ones is at least equal to ln(n + 1) 1.
Unfortunately, I do not yet know whether our conditions are
also sufficient. I have only been able to settle the degenerate
cases n = 1, 2 and to construct the lowest-order Casimir ele-
ment (of order 6) for n = 3. To my knowledge, the latter is
the first example of a nontrivial odd Casimir element.

Nevertheless, our results are sufficient to show that the
Casimir elements of the P(n — 1) algebras are highly degen-
erate: The product of any two Casimir elements without con-
stant term vanishes, and the image of any such Casimir ele-
ment under a completely reducible representation is equal to
ZEero.

Let us now briefly comment on how we are going to
proceed. For any finite-dimensional Lie superalgebra L, the
classification of all Casimir elements amounts to the classifi-
cation of all invariant supersymmetric multilinear forms on
the coadjoint module L * (Ref. 2). We shall first look for
graded subspaces U of L * with the property that the afore-
mentioned forms are uniquely determined by their restric-
tion onto U. Of course, a similar problem arises for any fin-
ite-dimensional graded L-module W in place of L *. The ba-
sic lemma of Sec. II contains a sufficient criterion for a grad-
ed subspace U of W to meet this condition. In Sec. III the
lemma is applied to the adjoint and coadjoint modules of L.
In this connection we also have to comment on the Cartan
subalgebras of a Lie superalgebra.

The subsequent sections deal with the P-type Lie super-
algebras. We recall some of their basic properties (Sec. IV),
apply the lemma and derive the necessary conditions which
the multilinear forms and hence the Casimir elements must
satisfy (Sec. V), and discuss the examples I have studied
(Sec. VI).

In the proof of the lemma we utilize a tool that is suc-
cessfully employed in most applications of supersymmetry,
the introduction of anticommuting scalars. ° Essentially, we
are dealing with a Lie supergroup, even though we do not
explicitly rely on the theory of these groups. For the conven-
ience of the reader, the pertinent algebraic structures have
been collected in a rather extensive Appendix. This Appen-
dix contains much more material than is needed in the proof
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of the lemma, and we allow for arbitrary gradations and
arbitrary commutation factors.’

We close this Introduction by the remark that through-
out this work the base field X will be any commutative field
of characteristic zero.

Il. A BASIC LEMMA

In the present section we are going to show that an in-
variant supersymmetric multilinear form on a graded mod-
ule Wover a Lie superalgebra L is uniquely determined by its
restriction onto a suitable graded subspace of W.

Lemma: Let L be a finite-dimensional Lie superalgebra
and let p be a graded representation of L in a finite-dimen-
sional graded vector space W. Suppose we are given a graded
subspace U of W, an element ueU;, and eclements
A,,...,A,€L; such that the following conditions are satisfied.

(1) The linear mappings p(A4;) are nilpotent.

(2) The vector space W; is generated by the elements
p(A4)u,...p(A,)u and its subspace Uj.

(3) The vector space W7 is generated by its subspaces
p(Li)u and U.

Then any L-invariant supersymmetric zn-linear form ¢ on W
is uniquely determined by its restriction onto U.

Proof: Without loss of generality we may assume that ¢
is homogeneous. Let V' be any finite-dimensional vector
spaceand letS = AV denoteits Grassmann algebra, consid-
ered as a Z,-graded algebra. Our main tool will be the exten-
sion of the domain of scalars from K to S, as described in the
Appendix.

Let &5 be the graded S-multilinear extension of ¢ onto
(Se W)" and let p be the representation of S® L in S W
obtained form p by the extension of the domain of scalars
from K to S. We know that ¢ is homogeneous of the same
degree as ¢, furthermore, ¢ is supersymmetric and S ® L in-
variant.

Obviously, the mappings p(Q) with Qe(§S® L) map
(S'® W); into itself.Consequently, p induces a representa-
tion 5 of the Lie algebra (S®L); in the vector space
(S® W)5, and the restriction ¢0 of ¢ onto (S® W)z is sym-
metric and (S'® L)g invariant.

Finally, let ¢ denote the polynomial mapping of
(S® W); into S defined by

d(x) = (fﬁ(x,...,x) for all xe(Se W);.

If Q is an element of (S® L); sgch that 5(Q) is nilpotent,
then the (S'® L); invariance of ¢5 implies that

35 (9 9x,,.., " Px, ) = b5 (X15...
for all x,,...,x,€(S® W)3, and hence that

(e 9Px) =(x) forallxe(Se W);.

Now choose any elements B,,...,B,eL; such that the
vector space W; is generated by the elements
p(By)u,...p(B,)u and its subspace U; (condition 3). Con-
sider the polynomial mapping

F: (55)X(S7)YX(SeU);»(Se W);
defined by

Xn) s
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F(a,,...,

— eﬁ(‘ﬁ@Al). .

a,; byy.sbs; y)

LB p(bieBY .e/"(bs@B:)y

Note that the mappings 5 (a; ® 4;) and p(b; ® B;) are nilpo-
tent, hence F is well defined (for the former, this follows
from condition 1, for the latter we only have to remark that
the bj are odd).

The derivative of F at the point (0,...,0;0,...,0; 1 ® u) is
the K-linear mapping of the vector space (S3) X (S7)°
X (§'® U); into the vector space (S ® W)g, defined by

(@00, bysesbs )

-y + Za ®p(4,)u + Eb ®p(B)u.

i=1

Condition 2 and the choice of the B; (hence condition 3)
imply that this mapping is surjective. But then it is an ele-
mentary fact from algebraic geometry that any polynomial
mapping of (S® W)z into a finite-dimensional vector space
is uniquely determined by its restriction onto the image of F
(see Ref. 17 for an easy proof). In view of the invariance
property of ¢~5 this implies that ¢ is uniquely fixed by its re-
striction onto (S'® U);. A

Because of its symmetry, ¢ is uniquely determined by
#, and the restriction of ¢ onto (S® U);g is uniquely deter-
mined by the restriction of ¢ into U. Thus all we have to show
is that ¢ is uniquely determined by (z(—,, and this is true pro-
vided we choose V such that

dim V>dim W; .
The simple proof of this fact is left to the reader.

lll. FIRST APPLICATIONS OF THE LEMMA

We will now apply our lemma to the adjoint and coad-
joint representations of a finite-dimensional Lie superalge-
bra L. Our results are not necessary for the rest of the paper,
but I think they are worth mentioning.

The adjoint case requires some preparatory remarks.
Following Kac’s basic work on Lie superalgebras® it has be-
come customary to simply identify the concepts of a Cartan
subalgebra of L or Ls. On the other hand, it is easy to tran-
scribe the classical definition to the supercase, as follows. A
graded Cartan subalgebra 4 of L is a nilpotent graded subal-
gebra of L which coincides with its normalizer in L (i.e.,
such that, for any AL, the relation {4, 4 ) Chimplies Ach).

One may now sit down and transcribe the classical the-
ory of Cartan subalgebras and regular elements of a Lie alge-
bra'® to the supercase. I do not want to go into detail here but
only mention a proposition which establishes a simple bijec-
tive correspondence between the Cartan subalgebras of L;
and the graded Cartan subalgebras of L.

Let us first introduce a notation. For any subset tC Lg,
the set of all 4eL such that, for any Tet,

(ad T)’A =0 if ris sufficiently large,

will be denoted by L°(¢). It is easy to see that L°(z) is a
graded subalgebra of L.

Proposition 1: Let L be a finite-dimensional Lie superal-
gebra.

(a) If his a graded Cartan subalgebra of L, then Ag is a
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Cartan subalgebra of L and & = L °(h5).

(b) If kisa Cartan subalgebraof Lz, thenh = L °(k) isa
graded Cartan subalgebra of L and Az = k.

(c) A graded subspace h of L is a graded Cartan subal-
gebra of L if and only if L °(h5) = A.

The following proposition is a corollary to the basic
lemma.

Proposition 2: Let L be a finite-dimensional Lie superal-
gebraand let /4 be a graded Cartan subalgebra of L. Then any
invariant supersymmetric multilinear form on L is uniquely
determined by its restriction onto 4.

Proof: Let K ' be any extension field of K. Then a graded
subalgebra A of L is a graded Cartan subalgebra of L if and
only if K’ ® h is a graded Cartan subalgebra of the Lie super-
algebra K’ ® L over K '. Hence we may assume that the base
field is algebraically closed.

We know that A3 is a Cartan subalgebra of Ls. Conse-
quently, we can construct the root space decomposition of L
with respect to 45.° For any linear form A on A5 let L *(hg)
denote the primary component of L corresponding to A. In
particular, we have

LO°(hs) = h.

If A is the set of all nonzero A€k 3 such that L* (k) #{0},
i.e., the set of all nonzero roots of L with respect to 45, then

L=he & L*(h;) .
AeA
To apply our lemma, we set U = 4 and choose an ele-
ment uehg such that

A(u)=£0 foralldeA.

Now let A€A and a<Z,. Then ad u induces a bijective linear
mapping of L % (45 ) onto itself, and for any AeL 7, (A5 ), the
mapping ad A4 is nilpotent. The rest is obvious.

Remark: Proposition 2 generalizes, in the supercase,
proposition 2 of Ref. 2.

Let us next consider the case where W is the coadjoint
module L * of L (this case will be of interest for the P-type Lie
superalgebras). Of course, the smaller the subspace U of W
is chosen the stronger the conclusion of the lemma will be.
Disregarding condition 1 as well as the requirement that u be
an element of U, the strategy must be to choose ueWj such
that p(L)u has the largest possible dimension and then to
take for U some graded subspace of W that is complemen-
tary to p(L)u.

In the case of the coadjoint module we are thus led to
search for even linear forms # on L such that the mapping
A— —wuoad AofLinto L *has maximalrank, i.e., such that
the subspace

R*={BeL |u({4,B)) =0 for all 4eL}
has minimal dimension, which is to say that the rank of the
bilinear form B * on L defined by

B"(4,B) =u({4,B))
is maximal.

For any ue(L *)5, B * is even and super-skew-symmet-
ric, and the radical R * of B* is a graded subalgebra of L.
Moreover, the rank of B “ is maximal if and only if both the
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restrictions of B * onto Ly and L; have maximal rank. Gen-
eralizing a concept from classical Lie algebra theory'® such a
linear form u will be called regular on L. As in Ref. 19 one
can then show that, for any regular linear form ue(L *)3,
any two elements of R * supercommute provided they are
homogeneous of the same degree.

IV. P-TYPE ALGEBRAS

Let us now recall some properties of the P-type Lie su-
peralgebras. It is well known*” that these algebras have a
natural consistent Z gradation. This fact will play a vital role
in the subsequent discussion. Thus it is most convenient to
carry out our analysis in the framework of ¢ Lie algebras,*®
with I' = Z as group of degrees and with the commutation
factor € defined by €(r,s) = ( — 1)” for all r,seZ.

Let #n>1be an integer. Consider K" =K "¢ K "asa Z-
graded vector space of column vectors, where the vectors
X = (X;)1cic2n Of degree zero (resp. one) are those with
X, 1= """ =X, =0 (resp. x, = - =x, =0) while all
the other homogeneous subspaces are equal to {0}. The vec-
tor space of all linear mappings of this space into itself is
canonically identified with the space of all 2n X 2n matrices
over K. As usual, these matrices are written in a block form
(4 2),whered, B, C, Daren X nmatrices. It is well known
that this space has a natural Z gradation: The matrices of the
types (5 2), (5 &),and (& §) form the homogeneous
subspaces of degrees O, — 1, and 1, respectively.

If the € commutator (which, in the present case, is noth-
ing but the usual supercommutator) is used to introduce a
multiplication in this space, the algebra that emerges is just
the general linear Lie superalgebra gl (n,n), endowed with its
natural Z gradation.’

Consider next the bilinear form on K #* whose matrix
(with respect to the canonical basis) is equal to (5 7)),
where J is the #» X n unit matrix. This form is nondegenerate,
€ symmetric, homogeneous of Z degree — 1, and the corre-
sponding e-adjoint operation,' denoted by an asterisk, is giv-
en by

(A B)* . ('D — ’B)
C D) \Cc 4/’
where, for example, ‘4 is the usual transpose of the matrix 4.

We define!
GP(n) = {Xegl(n,n)|X* = — X}

C A
and

W ={X'egl(nn)| X'*=X"}

-{E 7)

- C' 4’
Then GP(n) is the Z-graded subalgebra of gl(#,n) consist-
ing of all elements that leave the mentioned bilinear form
invariant. On the other hand, Wis a Z-graded GP(n)-invar-
iant subspace of gl(n,n) which is complementary to GP(n)

and which can be identified with the coadjoint module of
GP(n), the canonical pairing

‘B=B, 'C= —C}

‘B'= —B’, ’C’:C’].
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W XGP(n)—-K
being given by the supertrace (equal to the € trace)
(X', Y)-Str(X'Y) .

For completeness, we give the action of GP(n) on
gl(n,n):

<(A 0 A’ B’

0 —'A)’ (C’ D’)>
_( [4,4'] AB'+B''A
“\—4C'—C'4 [—’A,D’])’

e o (& 5)

(BC’+B'C BD’—A’B)
C4'—D'C CB'+C'B/’

The first of these equations exhibits the transformation
properties of the matrices 4 ', B’, C’, D' under the action of
the Lie algebra GP(n), ~gl(n). In particular, when apply-
ing the usual tensor calculus for gl(#), we shall write the
indices of the matrices 4, B, C, D in the following positions:

A=(4}), B=(BY), C=(Cy), D=D/)).

The algebra GP(n) contains the element

J 0
R= _%(o —J)'

It has the useful property that ad R is the grading derivation
of gl(n,n): An element Xegl(n,n) is homogeneous of Z-de-
gree 7 if and only if

(R,X)Y=rX.

Besides the GP(n) algebras we are interested in the
proper P-type algebras defined by

Pn—1) ={(GP(n), GP(n)) = GP(n)Nsl{n,n) ,

where, as usual, {GP(n), GP(n)) denotes the subspace gen-
erated by all supercommutators (X, Y) with X,YeGP(n).
The P(n — 1) are Z-graded ideals of the GP(n) and are
known to be simple Lie superalgebras provided that r>3.

Obviously, GP(n) is the direct sum of its subspaces
P(n— 1) and K - R. The subspace of W orthogonal to
P(n — 1) isequal to K -1, where I denotes the 27 X 2n unit
matrix. Consequently, the coadjoint module of P(n — 1)
can be identified with W /K - I.

Occasionally it is useful to notice that, when considered
as GP(n), modules, GP(n) is the direct sum of K * R,
P(n—1),,,P(n—1), and Wis the direct sum of K - I,
W, ,,and

Woo = {X 'eW,|Str(X'R) = 0}

16 )l =o].

However, we stress that the subspace W_, & Wy, @ W, of W
is not P(n — 1) invariant and hence cannot be identified
with the coadjoint module of P(n — 1).

Finally we want to comment on the weight space de-
compositions of GP(n) and W when considered as modules
over GP(n) or P(n — 1). Let & denote the subspace of all
diagonal matrices in GP(n). Then A is a Cartan subalgebra
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of GP(n),. Define the linear forms ¢;, 1<i<n, on h by the
requirement that €; (H) be the ith diagonal element of H, for
all Heh. Obviously, the €, form a basis of the dual 4 * of A.
Let E;,1<i, j<n, be the canonical basis matrices of
gl(n),
ie.,
(Ej)i =646, for 1<ijk,i<n.

Then the block matrices (2 2), where, in turn, 4, B, C, D
are set equal to E;; and the remaining three submatrices are
set equal to zero are weight vectors of gl(n,n) with respect to
h and the corresponding weights are €, —¢;, € +¢€,
—€, —¢€,and — ¢ + ¢, respectively. By forming the ob-
vious linear combinations, it is then easy to construct a com-
plete set of weight vectors for the submodules GP(n) and W.
We do not work out the details but only mention those block
matrices which will play a role in the subsequent section,

namely,

(%) m-(3 2)
Y \o —-E/J 7Y \o EJ

they are weight vectors of GP(n), W, and W, respectively,
and correspond to the weights €, — ¢, €, — ¢;, and — 2¢,.

For P(n — 1) the discussion can be repeated almost ver-
batim: One simply has to replace 4 by

h*=h0sl(n,n),
the linear forms ¢; by their restrictions € onto 4 °,
€ =¢lh’,
and to note that the €] are no longer linearly independent but

satisfy a linear relation which is unique up to an overall fac-
tor,

S e=0.

i=1

V. CASIMIR ELEMENTS OF THE P-TYPE ALGEBRAS

We are now ready to investigate the Casimir elements of
the GP(n) and P(n — 1) algebras. According to Ref. 2 all we
have to do is to determine the invariant supersymmetric
(i.e., € symmetric) multilinear forms on the coadjoint mod-
ules W of GP(n) and W /K - I of P(n — 1), respectively.
Without loss of generality we may (and will) also assume
that these forms are homogeneous in the sense of the Z gra-
dation.

We shall treat both cases simultaneously by first investi-
gating the P(n — 1)-invariant supersymmetric Z-homogen-
eous r-linear forms on W. To settle the GP(n) case we then
have to require in addition that these forms are annihilated
by the action of the element R specified in Sec. IV, which
means that the forms are Z homogeneous of degree zero; in
the P(n — 1) case the additional condition is that the forms
have to vanish whenever one of the arguments is equal to the
2n X 2n unit matrix L.

Let us first apply our basic lemma. We set
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o={E )

Obviously, Uis a Z-graded subspace of W. We choose for p
the coadjoint representation of P(n — 1) in W, for the 4, the
elements E,.j with i#j, and for u a block matrix of the form
& 9.), where D’ is a diagonal n X n matrix whose diag-
onal elements are different from each other. Then the lemma
applies and shows that the forms under consideration are
uniquely fixed by their restriction onto U.

Let ¢ be one of these forms. We show next that the re-
striction of ¢ onto U, vanishes. In fact, the elements of U,
have the form X’ = (¢ §.) with diagonal n X n matrices
A'.1f Tistheelement of P(n — 1) _, definedby T= (§ )
(where J is the n X n unit matrix), then

4',C’ diagonal} .

0 0
X' =(TY')YwithY = (A , O)EU1
and
(T,X')=0.

Let X1{,....X ! be any elements of U, Write X; =(T,Y"')
with Y'eU, as above; then

= 3 BY X5 (T}, X)) =0,

g=2

This result settles the GP(n) case: In that case ¢ has to
be Z homogeneous of degree zero, and consequently it is
already fixed by its restriction onto U, and this implies that
¢ =0.

In the subsequent discussion we assume that ¢#0. Let
us investigate ¢(X {,...,X ;) for arguments X | which are ho-
mogeneous elements of U. Since the elements F';, 1<i<n, as
defined in Sec. IV form a basis of U, we may assume without
loss of generality that the elements X , lying in U, belong to
this basis. Let 4, be the weight of X ; with respect to 4#*
(equaltoOif X ;eU,and equalto — 2¢;if X, = F). Theh’
invariance of ¢ implies that

z A J(H)G(X1,..,.X}) =0 forall Heh’.

g=1
But we know that, up to an overall factor, the € satisfy the
unique linear relation

n

S &=0.

i=1
Moreover, ¢ is supersymmetric and we have shown that its
restriction onto U, is equal to zero. All this implies that
$(X {,..,X ) vanishes unless each of the F'| appears among
the X/ exactly once.

It follows that ¢ must be Z homogeneous of degree — n,
that r>>n, and that ¢ is uniquely determined by the (» — n)-
linear form

(X 1rdX )o@ (F P X X 0)

on U, Since this form is symmetric, ¢ is already fixed by the
polynomial function

X' -¢(F .., F,,X',...X")
on U,
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To study this function we recall a well-known fact. Let p
be the coadjoint representation of P(n — 1) in W. If Qis any
element of P(n — 1), such that p(Q) is nilpotent, the invar-
iance of ¢ (in the Lie sense) implies that ¢ is invariant under
e”‘Q (in the group sense).

We apply this remark as follows. Let i and j be two dif-
ferent elements of {1,...,n}. Then it is well known (and easy
to check) that

i ) . E., if k+#i,j,
ep(E,-j)e“P(Eji)eP(Eii)E;ckz E;, if k=i

E,, if k=j,

and the formula remains valid if E j, is replaced by F .

If we now write

X' = z x.E;,

i=1

it follows that #(F{,....F ., X",...,X") is a skew-symmetric
polynomial function in x,...,x, . Consequently, there exists a
homogeneous symmetric polynomial ¢ in » indeterminates
such that

SF |, FlL X' X)) =@(x1X,,) H(x,» — %),
i<
and we know that ¢ is uniquely determined by ¢. Visibly, the
degree of @ is equal to » — 1n(n + 1), whence it follows that
rzin(n 4 1).

Finally, we recall that ¢ is derived from a multilinear
formon W /K - Iif and only if it vanishes whenever one of its
arguments is equal to I. Let us investigate what this condi-
tion implies for . The following discussion applies except in
the trivial case n =r = 1.

Suppose first that this condition is satisfied. Then
G(F (. F,, X" +tl.. . X' +tI) is independent of the pa-
rameter ¢z, for any X' = 2x;E. This in turn means that
@(x, +t,...x, +t) does not depend on ¢ or, what is the
same, that

En: =0,

i=1
where d; denotes the derivative with respect to the jth inde-
terminate.

Conversely, let us assume that this equation holds. Then
we conclude first that

¢(F; 7---,F;|>X""~»X’,I) =0
for all X 'eU,,. Now consider the (» — 1)-linear form ¢’ on W
defined by

(X, X )=¢(X1,.. X, _,I).
This form is P(n — 1) invariant {since P(n — 1) annihilates
I}, supersymmetric, and Z homogeneous (of degree — n).
Consequently, ¢’ is uniquely determined by the polynomial
function on U, whose value at X 'eU is
O (F{,...F.X"..X")=¢F;,.,F.L.X",..X'.])=0.

Thus we have shown that ¢’ = 0 and hence that ¢ vanishes
whenever one of its arguments is equal to I.

We summarize the results obtained above in the follow-
ing proposition.
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Proposition 3: (a) There are no nonzero GP(n)-invar-
iant supersymmetric multilinear forms on the coadjoint
module W of GP(n).

(b) Let ¢ be any nonzero P(n — 1)-invariant supersym-
metric r-linear form on W. Then r>} n(n + 1) and there
exists a homogeneous symmetric polynomial ¢ in » indeter-
minates such that, forall X' = 2x,E ,

BEF | F X X ) = @ty ) [[ (25 — X,)
i<j
The form ¢ is uniquely determined by @. In particular, ¢ is Z
homogeneous of degree — n.
(c¢) With the notation of part (b), the equation

i6i<p=0

is a necessary and sufficient condition for ¢ to vanish when-
ever one of its arguments is equal to 1.

Corollary: (a) The Lie superalgebras GP(n) have no
nontrivial Casimir elements.

(b) If a nonzero Casimir element of the Lie superalge-
bra P(n — 1) has no constant term, then it is Z homogen-
eous of degree —n and its order is at least equal to
in(n + 1). In particular, the product of any two such Casi-
mir elements vanishes.

The final statement of the corollary has another strange
consequence. Namely, let ¥'be any (possibly infinite-dimen-
sional) irreducible P(n — 1) module (this assumption may
be understood in the Z-graded, Z,-graded, or nongraded
sense).?” Then if Cis a Casimir element of P(n — 1) without
a constant term, the square of the corresponding Casimir
operator C,, vanishes, which implies that C|, itself is equal to
zero. Of course, the same holds if ¥'is any completely reduc-
ible P(n — 1) module.

On the other hand, for any nonzero Casimir element C
of P(n—1) there exists a finite-dimensional Z-graded
P(n — 1)-module V such that C,, #0. In fact, one can prove
the following general proposition, which in the Lie algebra
case is due to Harish-Chandra.

Proposition 4: Let € be a commutation factor on an Abe-
lian group T, let L be a finite-dimensional € Lie algebra, and
let U(L) denote its universal enveloping algebra. For any
nonzero element XelU(L) there exists a finite-dimensional
I'-graded L-module ¥ such that the representative X, of X
in Vis different from zero.

Using the results of Refs. 1, 2, and 20, the classical
proof'® can immediately be transcribed to the € Lie algebra
case.

Remark: Of course, Proposition 3 only solves part of our
problem: One would like to know whether the conditions on
@ are also sufficient. Stated differently: To any symmetric
polynomial @ in » indeterminates which is homogeneous of
degree d, does there exist a P(n — 1)-invariant supersym-
metric (d + { n(n + 1))-linear form ¢ on W (necessarily Z
homogeneous of degree — n) which corresponds to ¢ in the
sense of Proposition 3? In view of the examples given in the
subsequent section I think there is a chance that this might
be correct. Be that as it may, our results clearly indicate that
Casimir elements will hardly play a major role in the repre-
sentation theory of P(n — 1).
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VI. EXAMPLES

In the present section we are going to deal with the cases
n = 1,2 and the simplest example for » = 3. For lack of any
basic method of construction, we have to use the following
tedious approach: Employing the representation theory of
P(n — 1)y=sl(n), we determine the P(n — 1) -invariant
supersymmetric multilinear forms on W which satisfy the
necessary conditions found in Proposition 3 and then try to
fix the remaining free parameters such as to make the form
P(n — 1) invariant.

To simplify the notation we shall identify W,, W_,, W,
with the sl(n) modules of the corresponding # X n matrices
A'=(4"}),B' = (B"),C’' = (C}), which are arbitrary,
skew symmetric, or symmetric, respectively.

A.Thecasen=1

This case is completely degenerate and trivial; it is only
included for the sake of completeness. For any integer #>>1
there is, up to the normalization, just one nonzero supersym-
metric Z-homogeneous r-linear form on W of degree — 1.
The form is P(0) invariant, and it is derived from an r-linear
form on W /K - I if and only if » = 1. This result is to be
compared to the obvious fact that the enveloping algebra of
P(0) is nothing but the Grassmann algebra of the one-di-
mensional vector space P(0) _,.

B. The case n=2

This case is more interesting but still somewhat degener-
ate. We will first summarize our results and then comment
on how they have been obtained.

Choose any integers s,t>0; we are going to define a
P(1)-invariant supersymmetric Z-homogeneous (2s +¢

+ 3)-linear form ¢,, on W of degree — 2. Obviously, it is
sufficient to specify its restrictions onto the products
WixWErttland WixXW_ xXWEH 1 (if2s+1>1).

Let us define the 2 X 2 matrix G by

, 0 1
G=(GY = ( ) .
(G% -1 0
Then the restriction of ¢, onto W3 X W¥ *‘*1is given by
$,,(C'",C?*A4",.,4")
= Tr([GC", GC™|A ¥ +1)(Tr4")
and its restriction onto Wi X W_ X WZ +'~ by
¢, (C'"',C*C” B",4,...4")
=¢,, Tr([GC'",GC"*]GC")
XTr(d *B'G~")(Trd")~"',
where ¢, is some constant to be fixed below and
A’'=A4"—1Tr(A’) denotes the traceless part of 4. For
t = O the constant c,, and the latter expression are set equal
to zero. Note that for convenience the arguments from W,
have been chosen to be equal, which is sufficient since ¢, , has
to be symmetric in these arguments. Also, we remind the

reader that the square of any traceless 2 X 2 matrix (like4 ')
is a scalar multiple of the unit matrix.
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The form ¢,, is P(1) invariant if and only if
2,,(25+8)+t/(2s+t+1)=0,

and the polynomial ¢, corresponding to ¢, , in the sense of
Proposition 3 is given by

@i (X1, x3) = (§(x, — X)) (x4 x,)"

The polynomials (x, — x,)* (x; + x,)’ form a basis of the
algebra of all symmetric polynomials in x,, x,. According to
Proposition 3 this implies that the ¢, with 2s + ¢+ 3=~
form a basis in the space of all P(1)-invariant supersym-
metric r-linear forms on W. Furthermore, a P(1)-invariant
supersymmetric multilinear form on W vanishes whenever
one of its arguments is equal to / if and only if it is propor-
tional to some ¢,,. More generally, the (25 + ¢ + 2)-linear
form obtained from ¢, , by setting one of its arguments equal
to [ is just 2t /(2s + ¢ + 1) times ¢,, _, (equal to zero if
t=0).

To derive the aforementioned results it is advantageous
to first classify those forms ¢ of the type in question, which
vanish whenever one of their arguments is equal to Z, and to
identify these forms with their restrictions onto
W_,e Wy, ® W,. According to Proposition 3, they must be
(2s + 3) linear, withs = 0,1,2,... .

Next we recall that the mth symmetric power of the
adjoint sl1(2) module is isomorphic to the direct sum of the
irreducible s1(2) modules of the dimensions 2m — 4p + 1,
where p is an integer with 0<2p<m. This observation shows
that the restriction of ¢ onto W2 X W+ ! is fixed up to its
normalization and that the restriction of ¢ onto
W3 W_, X W3~ (ifs»1) must vanish. Moreover, it can
be used to obtain a particularly simple proof of the fact that
the form constructed is indeed P(1) invariant.

Once this case is settled it is easy to guess the general
ansatz. The results of the special case can then be used to
check that this ansatz indeed works.

C. The simplest example for n=3

According to Proposition 3 we want to construct a
P(2)-invariant supersymmetric six-linear form ¢ on W
which is Z homogeneous of degree — 3. Note that this form
will automatically vanish whenever one of its arguments is
equal to 7, thus we could well include this property among
our assumptions.

Obviously, it is sufficient to specify the restrictions of ¢
onto WX W37 and W_ X WX W1 (we could even re-
place W, by Wy,).

Next we exploit the invariance of ¢ under P(2)y=sl(3)
and begin with t113e restriction of ¢ onto W X W1. The third

exterior power A W, of the s1(3) module W, is the direct

sum of a 10- and a 10-submodule. On the other hand, the
third symmetric power S;(Wy,) of the s1(3) module W),
contains both a 10- and a 10-submodule exactly once, and
the same holds true for S;(W,). This implies that there are
exactly two linearly independent sl(3)-invariant six-linear
forms on W X W which have the correct symmetry prop-
erties and that these forms vanish whenever one of the argu-
ments from W, is equal to I. Moreover, the foregoing analy-
sis suggests the following construction of these forms.
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Let ¥V and 70 denote the sl(3) modules of all rank three
tensors with three upper or three lower indices, respectively,
and let ¥V and V be the corresponding submodules of sym-
metric tensors (they carry the 10- and 10-representations,
respectively). We define the skew-symmetric sl(3)-invar-
iant trilinear mappings

SSW3iov, S WSV,
by

Suk(c Il, C 12’ C /3) =C lru(;epqic ;fersjc ;:euwkeabc
and

S (C™, C?, C%) = CHCC e, ,
where the € symbols are skew symmetric and normalized by

the condition

123

€¥=¢€,=1.

Of course, it has to be checked that § % and E,jk really are
symmetric in 4, j, k.

Similarly, we define the symmetric sl(3)-invariant tri-
linear mappings

WiV, T Wi-V,,
by

T4, A", A") = (4'4") 4 7,

Ty(d', A, A") = (4'4")" 4" €,y .

Since T and T are symmetric it is sufficient to specify them
for coinciding arguments.

Our ansatz for the restriction of ¢ onto W3 X W3 now
reads

¢(A I,A I,A 1, Cll, Clz, Cl3)
=e71jk(A I’Al’Ar)Sijk(Cll’CIZ,CIS)
+fTA",4',4")5:(C",C?, CP),

where e and f are some constants to be fixed later.

One might hope to obtain a relation between e and fby
calculating (X', X", X', F{,F5, F}) with X' = 3x,E
and demanding that this should be proportional to

(xy —x) (%) —x3) (%, — x3) ,

see Proposition 3. However, with these arguments both 78
and 7 are equal to

(x, —X5)(x, - x3) (x, —X;)

and hence no relation for e and f can be derived this way.

This is remarkable: The requirement for P(2), invar-
iance, supersymmetry, and the “correct” form of
$X' X' X",F{,F},F}), X' =%x,E/, is not sufficient
to fix the restriction of ¢ onto W3 X W3.

Let us next construct the ansatz for the restriction of ¢
onto W_, X WX W?1. The fourth exterior power A W, of
the sl(3) module W, is isomorphic to the irreducible 15-
dimensional s1(3) module M consisting of the traceless ten-
sors (Q¢) which are symmetric in the upper indices. The
corresponding dual module M consists of the traceless ten-
Sors (@ fj) which are symmetric in the lower indices. Since
the tensor product W _, ® W, contains a unique sl(3) sub-
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module isomorphic to M, we conclude that there is, up to the
normalization, just one nonzero sl(3)-invariant six-linear
form on W_, X Wy X W which has the correct symmetry
property, and this form vanishes if the argument from W, is
equal to 1.

To construct this form let M, denote the reducible ten-
sor space consisting of all tensors of the form (Q %). Thenthe
bilinear mapping

R: W_,X WO—J‘?O ,

defined by
RG(B',A') =¢€,uB"PA",

and the skew-symmetric quadrilinear mapping
R WioM,
defined by

R Z(Clly C,z’ Cls, C“‘) = C;CZC;:C :;.‘C ;ieoqréjmetwjeabcd ’

are sl(3) invariant. The € symbol with four indices is skew
symmetric and normalized such that €,,;, = 1.

Actually, R _yields an si(3)-module isomorphism of
W_,® W, onto M, and R yields an sl(3)-module isomor-

4
phism of A W, onto M. According to our foregoing re-

marks, it follows from the s1(3) invariance that (R ¥ ) must
be traceless and symmetric in the upper indices, but this can
also be checked directly, of course.

Our ansatz for the restriction of ¢ onto W_; X W, X W}
now reads

¢(B',A r, Crl’ C:z’ C’s, Ci4)
=g—RS';(B1,A ;)R Z(Crl’ Cl2, Cl3’ Cr4) ,
where g is one more constant to be fixed.

The main task is then to find the conditions on e, f, g
under which the form ¢ is P(2) invariant. It turns out that
this is the case if and only if

e= —12g, f= —24g.

The proof is quite tedious: I have repeatedly used the s1(3)
invariance as well as several tricks to make the calculations
feasible.

Thus the multilinear form we have been looking for does
indeed exist. Correspondingly, the algebra P(2) has a Casi-
mir element of order 6 which is Z homogeneous of de-
gree — 3. To my knowledge this is the first example of a
nontrivial odd Casimir element of a Lie superalgebra. Unfor-
tunately, it is quite degenerate and I cannot imagine how it
could be useful.

More efficient techniques have to be developed before
we can proceed to construct higher-order Casimir elements
or to tackle the cases n>4.

Our results show that for # = 1,2,3 the Lie superalgebra
P(n — 1) has a Casimir element of the lowest possible order
i1n(n+1).1 conjecture that this should be true for all n,
even if the much more general question asked at the end of
Sec. V should be answered in the negative.
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APPENDIX: MULTILINEAR ALGEBRA WITH
e-=COMMUTING SCALARS

The use of a Grassmann algebra as the domain of scalars
in multilinear algebra and analysis is an important tool for
dealing with Bose—Fermi symmetry (see Ref. 16 and the
literature cited therein). For the convenience of the reader, I
want to describe the pertinent algebraic structures in a lan-
guage most suitable for our purposes and to comment on
some special results which have been used in the proof of the
basic lemma in Sec. II. Also, I take the opportunity to pres-
ent the material in its general formal setting by allowing for
arbitrary Abelian groups of degrees and arbitrary commuta-
tion factors. Here and in the sequel we use without comment
the notation and results of Refs. 1 and 20.

In the following, I" denotes an Abelian group and € a
commutation factor on I" with values in K. Moreover, Sis a
I"-graded associative e-commutative algebra over K with a
nonzero unit element (necessarily homogeneous of degree
zero). Thus K can be identified with a subalgebra of S. All
modules V over S are assumed to be unitary in the sense that
under scalar multiplication the unit element of S acts as the
identity operator on V. In particular, any S module has a
canonical structure of a vector space over K. We follow the
convention of Ref. 1 according to which the degree of a ho-
mogeneous element is denoted by the ‘“corresponding”
lowercase Greek letter. The gradations that are going to ap-
pear all have I as their group of degrees. Thus we can sim-
plify the notation and speak about graded vector spaces,
graded algebras, etc. without further specification.

1. Some basic definitions and results

Our subsequent discussion is based on the following ele-
mentary observation. If ¥ is a left (resp. right) graded .S
module,”*** we can introduce on ¥ a new structure of a right
(resp. left) graded .S module by keeping the addition and the
gradation and introducing the scalar multiplication through
the equation

xs = €(£,0)sx  [resp. sx = xse€(0,6)]

for all homogeneous elements xV and s€S. In both cases,
the left and the right S-module structures on ¥ are compati-
ble in the sense that

(sx)s = s(xs')

for all xeV and s,s'€S. Note also that the transitions from left
to right and from right to left graded .S modules are inverse to
each other in the obvious sense and that the underlying
structure of a graded vector space over K remains un-
changed under these transitions.

Whenever we shall speak about a graded Smodule Vitis
always understood that ¥'is endowed with the structures of a
left and of a right graded S module and that the two are
related as described above.

Let V,,..., ¥V,,, Wbe graded S modules and let y€I". Con-
sider the set Lgr, (V),...V,; W), of all n-additive map-
pings g of V;X -+ X ¥, into W, which are homogeneous of
degree ¥ and satisfy the conditions

88X 13X 050X, ) = €(¥,0)88(X1,..X, ) 5
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(X4 iy X, 8%, L fyeeesXy ) = (X 15eesX 08X, | 500X, )
ifl<r<n — 1,
8(xyyesX, _1,X,8) =8(Xq00x,)8,

for all elements x;e¥; and all homogeneous elements s<S.
(Note that each of these # + 1 conditions is a consequence of
the other n ones.) Obviously, this set is a subspace of
Lgr,(Vy,...V,; W),. The sum of these subspaces of
Lgr, (Vy,....V,; W) (with yel) is direct and will be denoted
by Lgr,s(Vy,...,V,; W). This is a graded subspace of
Lgr, (V,,....,V,; W) whose elements are called the graded .S-
multilinear mappings of ¥; X - XV, into W.

It is easy to introduce on Lgr, ¢ (V,,...,V,; W) a struc-
ture of a left graded S module: If geLgr, s (V4,...,V,; W) and
seS, we define the mapping sgeLgr, s (V,....V,; W) by

(58) (X150e0X, ) = 8g(X1,...0x,, ) for all x,eV; .

The corresponding structure of a right graded .S module is
then given by

(gs) (xl’--wxn ) = g(sxl,xz,...,xn )

(same notation as before).

Of course, the case » = 1 is most important and should
have been considered first. In this case, we simplify the nota-
tion and write Lgr instead of Lgr, 5. If V and W are two
graded S modules, the elements of Lgr (V, W) are called the
graded S-linear mappings of ¥V into W. Note that
Lgrs (V,W) consists of all S-linear mappings (in the usual
sense) of the right .S module ¥ into the right S module W
which belong to Lgr(V,W).

The elements of Lgry(V,W), are called homomor-
phisms of the graded .S module V into the graded S module
W. Isomorphisms of graded .S modules are defined corre-
spondingly.

The definition of graded muiltilinearity has been chosen
such that the classical relation between tensor products and
multilinear mappings remains valid. If V,...,¥,, are graded .S

® V, is, atfirst, only
Ay

an Abelian group which is generated by the decomposable
tensors x, ® * ' ® x,,, with x,e¥;. By definition, these tensors
satisfy the equations

modules, their tensor product V', @ ---
S

X, @ ®X, 58X, ® " ®X,

=X, ® " ®X,®5X,, ;8 " ®X,

for all x,e¥; and all s&S. Nevertheless, the tensor product has
a natural gradation and natural left and right S-module
structures which convert it into a graded .S module. The gra-
dation is fixed by the requirement that x, ® - - ® x,, is homo-
geneous of degree &, + -+ + &, if the elements x,eV; are

homogeneous of degree &;, and the S-module structures are
given by the equations

s(x,8 " ®x,)=(sx)®%x,8 - ®X,,
(X, ®x,)5=x,8" " ®X,_,; ®(x,5),

for all x,€V; and all seS.
Classical results on tensor products now imply that for
any mapping geLgr, < (Vy,....V,; W) there exists a unique

mapping gelgrs(V,® -+ ® V,, W) suchthatforallx.eV,
S S
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g(xpex,) =8(x,® " ®x,),

and the assignment g — g defines an isomorphism of the grad-
ed Smodule Lgr, s (V,,...,V,; W) onto the graded S module

o V,, W).
N

The foregoing discussion immediately leads to a series of
definitions concerning algebras and their modules.

(a) A graded S algebrais a graded S module 4, endowed
with a graded S-bilinear mapping of 4 X A4 into 4 (the prod-
uct mapping), which is homogeneous of degree zero. By re-
stricting the domain of scalars, any graded S algebra can be
considered as a graded K algebra.

(b) Associativity and € commutativity of graded S alge-
bras are defined as usual. For any graded S module ¥, the
graded S module Lgrg (V,V), endowed with the usual multi-
plication (i.e., composition) of mappings, is an associative
graded S algebra.

(c) An € Lie algebra over S'is a graded S algebra, whose
multiplication is € skew-symmetric and satisfies the € Jacobi
identity. Any associative graded S algebra is converted into
an € Lie algebra over S if the original multiplication is re-
placed by the e commutator. In particular, if V'is a graded S
module, we can apply this remark to Lgrs (¥,V) and obtain
an € Lie algebra over S which will be denoted by g/s (V,e).

(d) Let 4 be an associative graded S algebra or an € Lie
algebra over S. A graded representation of 4 in a graded S
module V is a homomorphism p of the graded S algebra 4
into the graded S algebra Lgrs (V,V) or gl (V,e), respective-
ly. (According to our conventions this implies that p is ho-
mogeneous of degree zero.) A graded S module ¥ that is
endowed with a graded representation of 4 is called a (left)
graded A module over S. Equivalently, this definition can be
formulated as follows. A graded 4 module V over S'is at the
same time a graded .S module and a graded 4 module over K.
Both of these structures are built over the same graded vec-
tor space structure of ¥ and they are related by the require-
ment that the product mapping of 4 X Vinto ¥ be graded S
bilinear.

In a systematic presentation of the theory we would now
have to go through the basic constructions with graded alge-
bras and modules (over K) and to investigate how these can
be generalized to the present setting. We do not want to
embark on this boring exercise but rather mention some spe-
cial results.

In the Lie case, we comment on a few sections of Ref. 1.
Let L denote an € Lie algebra over S.

Section 3 of Ref. 1 can immediately be transcribed, with
the sole proviso that the canonical homomorphism 7 might
no longer be injective. In particular, the definition of the
graded tensor product of linear mappings remains valid, and
the graded tensor product of graded L modules over S is
defined as usual and is still associative.

In order to generalize Sec. 4 of Ref. 1, let V,,..,V,,, Wbe
graded L modules over S. Then the usual action of L makes
the graded S modules Lgr, o(Vy,...,.V,; W) and

Lgre(Vi® -
s

Lgrs(V, ® -+ @ V,, W) into graded L modules over .S
S S

and the canonical mapping g — g considered above is an iso-
morphism of graded L modules over S.
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In Sec. 5 of Ref. 1 the action of the symmetric group on
graded tensor products is discussed. Almost all the results of
this section can immediately be transcribed to the present
setting. In particular, the symmetry transformations S, and
S, are defined as usual. A reservation has to be made only in
connection with the representation theory of the symmetric
group. This theory is usually formulated over a commutative
field, whereas in the present case an analogous theory over S
would be required.

In the associative case, we mention the following results.
Let 4,,...,4, be associative graded S algebras. Then there

exists a unique multiplicationin4, ® --- ® 4, such that
S 5

(g, " ®a,)(b;® " -D,)

= 'I'I.e(aci,b’j)a,b1 ® ' '®a,b,,
for all h:mogeneous elements a,,b,€4,. Endowed with its
structure of a graded S module and this multiplication,
Alg ? A, is an associative graded S algebra which is

called the graded tensor product of the 4; and will be de-

notedby4,® - ® 4,.
S S

Now let p; be a graded representation of the associative

graded S algebra A4, in a graded S module ¥V, for 1<i<n.
Then there exists a unique graded representation p of the

associative graded S algebra 4, ® - ® 4, in the graded S
5 Y

module ¥, ® ---® V, such that
S S

pla;®--®a,)=p(a)e ep,(a,)

[ graded tensor product of the p, (a;) ] for all a,€4,. The rep-
resentation p is called the graded tensor product of the repre-
sentations p;.

2. Extension of the domain of scalars fromKto S

In practice, most of the graded .S modules and S algebras
arise through an extension of the domain of scalars from X to
S, a process which we are now going to describe.

Let V'be a graded vector space over K. Then the graded
vector space S ® V (tensoring with respect to K) has a natu-
ral structure of a left graded S module such that

sSsex)=(ss)®x

for all 5,5’cS and all xe¥. The corresponding structure of a
right graded .S module is given by

(sex)s =€(£,0')(ss')@x

for all homogeneous elements s,5'€S and xeV.
Similarly, ¥ ® S has a natural structure of a right graded
S module such that

(x®s8)s' =x® (s5)

for all xeV and s,s’€S, and the corresponding structure of a
left graded S module is given by

s(xes) =€e(d',£)x®(5's)

for all homogeneous elements x€} and s,5'eS.
Now it is easy to see that there exists a unique additive
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mapping of S ® Vinto V' .5 thatmapss ® xontoe(0,5)x ®5,
for all homogeneous elements s€§ and x<V. This mapping is
an isomorphism of graded S modules. Thus there is no loss of
generality if we restrict our attention to one of these mod-
ules. From habit I work with § ® ¥ although for V' .S some
of the subsequent formulas would simplify a little. We say
that the S module S ® ¥V is obtained from V by extension of
the domain of scalars from X to S.

Let V,,...,V, be graded vector spaces (over K). Then
there exists a unique canonical isomorphism of graded §
modules

(SeV)) e (SeV,) e - @ (SaV,)
S S S

-Se (Ve ---eVl,)
such that
(5,2x))® " ®(s,0x,)

~[] €051 s, ® (x,® - ®x,)
<]
for all homogeneous elements x,€¥; and s5;€S.

We are now ready to discuss the extension of multilinear
mappings. The linear case is trivial. If V" and W are graded
vector spaces and if geLgr(V, W), then idg gg (graded ten-
sor product) is an element of Lgrs (S e V, S ® W) which will
be called the graded S-linear extension of g onto S® V.

Consider next the graded vector spaces V,,...,.V,, W
and a mapping gelgr, (V,,...,V,; W). Let g be the corre-
sponding K-linear mapping of ¥, ® --- @ V,, into W. Its ex-
tension idg ® g belongs to

Lgrs(Se (Vo e V,),Se W)

Composing it with the isomorphism constructed above, we
obtain an element of

Lgrs((Se V) e - ® (SeV,),Se W)
S

which canonically corresponds to an element
gelgr, s (SeV,,..SeV,;SeW).
If g is homogeneous of degree ¥, then

g(s,®x,...,5, ®X,)

= 6(7’: Z Uk)H €(5:,0;)8," "8, ®Z(X 500X, )
k i<j

for all homogeneous elements x;€¥; and s;€S. The mapping

£ is called the graded S-multilinear extension of g onto

(SeV)X X (S®V,). Of course we have § =ide®g if

n=1.

The foregoing constructions will now be applied to
graded algebras and their modules. Let 4 be a graded algebra
over K. We make the graded S module S ® 4 into a graded §
algebra by demanding that the product mapping of S ® 4 be
the graded S-bilinear extension of the product mapping of 4.
Thus the multiplication in S ® A4 is fixed by

(s®a)(s®a') =€(a,c’)(ss') ® (aa’)

for all homogeneous elements s,5'cS and a,a’e4. We say that
the algebra S ® 4 is obtained from 4 by extension of the do-
main of scalars from X to S. It is easy to verify the following
statements.
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(1) If 4 "isasecond graded K algebraandif 4 —A4'isa
homomorphism of graded K algebras, then idef
S®A—-S®A’is a homomorphism of graded .S algebras.

(2) If A is associative or € commutative, then S® 4 is
likewise.

(3) If eis a unit element of 4, then 1 ® e is a unit element
of S@A.

(4) If A is an € Lie algebra over K, then S® 4 is an € Lie
algebra over S.

Suppose next that 4 is an associative graded algebra or
ane Liealgebra over K. If Vis a graded A module, we convert
the graded S module S ® V'into a graded S ® 4 module over .S
by demanding that the product mapping of
(S®A) X (Se V) into S® Vbe the graded S-bilinear exten-
sion of the product mapping of 4 X ¥ into V. Thus we have

s®a)(s'ex) =¢€(a,0')(ss') ® (ax)

for all homogeneous elements s,s'eS, aed, and xeV. Of
course, it has to be checked that this prescription really de-
fines a graded S’ ® 4 module over S. Instead, we give a differ-
ent but equivalent defintion from which this will be obvious.

We begin with a preparatory remark. Let V' be a graded
vector space and geLgr(V,V), seS. We know that id ® g, the
graded S-linear extension of g, |Dbelongs to
Lgrs (Se V,S® V). Thus the same is true for s(idgg); let
us denote this mapping by s ®g. Obviously, there exists a
unique K-linear mapping

SeLgr(V,V)-Lgrgy(SeV,Se V)
such that

5@g—os58g
for all seS and geLgr(V,V), and it is easy to check that this is,
in fact, a homomorphism of graded .S algebras. Obviously,
the same holds true if this is considered to be a mapping of
S® gl(V,e) into gls (S ® V,e).

Now let V'be a graded 4 module and let p be the corre-
sponding homomorphism of the graded algebra 4 into the
graded algebra Lgr(V,V) or gl(V,e), respectively. Then
id ® p is a homomorphism of the graded S algebra S' & 4 into
the graded S algebra S Lgr(V,V) or S®gl(V,e), respec-
tively. Composed with the homomorphism above, we thus
obtain a graded representation p of the graded S algebra
S ® A4 in the graded S module S @ V. By definition, we have

pPGea))(sex) = (sgp(a))(s’ ®x)

=e(a,0')ss' ®pla)x

for all homogeneous elements s,5'€S, acA, and xe ¥, which is
exactly the prescription given above. We say that the repre-
sentation g (resp. the S ® 4 module S'& ¥) is obtained from
the representation p (resp. from the 4 module V) by exten-
ston of the domain of scalars from K to S.

In the following, we restrict our attention to the Lie
case. Let L be an € Lie algebra (over K) and let V,...,V, be
graded L modules. We have already defined a canonical iso-
morphism of graded S modules

(SeV)e (SeV,)e - ®(Se¥V,)
S S S

sSe (Voo V,).
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Under the present assumptions, both of these modules have
a natural structure of a graded S ® L module over S, and it is
easy to see that our mapping is even an isomorphism of these
modules.

Consider one more graded L module W. For any ele-
ment gelLgr, (V,,...,.V,; W) we have defined its graded S-
multilinear  extension g  which  belongs to
Lgr,s(SeV,,..SeV,;Se W). Consequently, there exists
a unique K-linear mapping

SelLgr,(V,,...V,; W)—Lgr,s(SeV,..SeV,;SeW)
such that
S®g—sg

for all s€S and geLgr, (V,,....V,; W). Under our assump-
tions, both spaces have a natural structure of a graded S® L
module over S, and it is easy to see that our mapping is, in
fact, a canonical homomorphism of these modules. In par-
ticular, if geLgr, (V,,...,V,; W) is L invariant, its graded S-
multilinear extension g is S ® L invariant.

Next we want to comment on the action of the symmet-
ric group. We keep the notation above. Then for any permu-
tation 7 of {1,...,n} and any geLgr, (V, ., s Viy; W) We
have (with a slight abuse of notation)

S,8=1(5,8)"

In particular, if ¥, = -+ = ¥, = V and if g is € symmetric,

then so is . Of course, an analogous (dual) commutativity

result holds for Se(V,®--reV,) and (Se¥V,)e ---
N

(SaeV,).
S

Finally, let us comment on how the graded S modules
S ® ¥V, with ¥ a graded vector space, are characterized within
the class of all graded S modules. The answer is simple: A
graded S module ¥ is isomorphic to some S® ¥, with ¥ a
graded vector space over K, if and only if it has a homogen-
eous basis over S.

Some care is needed to understand this result. 4 priori,
we have to distinguish between bases of the left and of the
right § module ¥. Obviously, there are examples where a
graded S module has no basis whatsoever. Moreover, it is
conceivable (although I have not tried to construct an exam-
ple) that a basis of the left S module ¥ is not necessarily a
basis of the right S module V (and vice versa). In any case, if
a family of elements of Vis homogeneous (i.e., consists of
homogeneous elements only), then it is a basis of the left .§
module ¥ if and only if it is a basis of the right § module ¥,
and it may then be called a homogeneous basis of the graded
S module ¥V without further specification. The reader is
warned that the number of basis elements which are homo-
geneous of a fixed degree yeI” may be different for different
homogeneous bases, the most obvious reason being that §
may contain invertible elements which are homogeneous of
nonzero degree.

We could now proceed to develop a graded calculus for
matrices over S; however, this would extend the Appendix
beyond a reasonable size. Instead, we refer the reader to Ref.
25 where substantial results of this type have been obtained.
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The embedding of the dynamical algebra U(M /N) of nuclear supersymmetries in larger
algebraic structures is studied. A noncompact Z, & Z, graded color superalgebra

SpO(2M /1/2N /0) is identified as a receptacle for various chains containing boson and
fermion (super) algebras. The existence of a generalized quasispin algebra is demonstrated and

discussed.

I. INTRODUCTION

Recent experimental and theoretical interest in nuclear’
(and other?) dynamical supersymmetries has emphasized
the need for the study of the underlying algebraic structures
beyond the finite-dimensional irreps of compact forms of
U(M /N) (see Refs. 3-6). A recent extension’ of the ideas of
supersymmetric interacting boson models to explore the role
of fermion pairing (via a seniority scheme) used an interven-
ing OSp(M /N) subalgebra. Although phenomenologically
reasonable it suffers’ from unusual features of nonconserva-
tion of nucleon number and non-Hermitian interaction Vi,
and it has recently been shown®® that the embedding in
U(M /N) involves indecomposable representations. Other
approaches'®!’ to nuclear collective models using noncom-
pact Lie algebras [e.g., Sp(6,R) DU(3)] also have super-
symmetric enlargements in terms of noncompact OSp(M /
N) superalgebras'?; recent attempts to apply supersymme-
tric IBM models consistently over a range of nuclei'’ also
suggest larger structures. Finally, an eventual microscopic
foundation of the IBM ideas will presumably involve infi-
nite-dimensional mappings.'*

In the present paper we identify a noncompact Z, & Z,
color superalgebra'>-'® SpO(2M /1/2N /0) as a natural re-
ceptacle for various chains containing boson and fermion
(super) algebras. The first Z, corresponds to the usual Fer-
mi—Bose sign factor, while the additional grading arises from
the inclusion of generators both linear (odd) and bilinear
(even) in the boson-fermion realization. The assignment of
gradings and commutation factor is given in (2.10). It is
shown in Sec. II below that SpO(2M /1/2N /0) has as subal-
gebras (superalgebras) both the usual fermionic O(2N + 1)
and bosonic SpO(2M /1) (an alternative to the Heisenberg
algebra). Its Fock space realization®'? comprises one irrep
with just two constituents with respect to SpO(2M /2N).
The Casimir invariant is a specific linear combination of

acB, B={a=I,m,m,= +1,,+ (I

- —_ a

—1),..., + 1,0; I, positive integer}

number operators and suitably defined pairing operators.
Indeed the latter are identified with a generalized quasispin
algebra Sp, (2) occurring in the Sp, (2) XOSp, (M /N)
subalgebra of SpO(2M /1/2N /0) (the + correspond to
equivalent choices, interchanged by Hermitian conjuga-
tion). Finally, we discuss briefly the significance of the gen-
eralized quasispin algebra.

Il. THE COLOR SUPERALGEBRA

The construction of ordinary Lie algebras [e.g.,
SO(2k), SO(2k + 1), U(k), Sp(2k), etc.] using either bo-
son or fermion operators is well known. In recent times Lie
superalgebras of various sorts [e.g., U(M /N), OSp(M /N),
etc.] have been constructed using both boson and fermion
operators. In this section we establish the existence of a
Z, ® Z, color superalgebra, which contains generators both
linear and bilinear in terms of boson and fermion operators,
with a generalized quasispin subgroup.

After the gradation of the generators is established we
show that the system satisfies closure under the supersym-
metric commutation factor and hence forms a color superal-
gebra which we shall denote SpO(2M 44, /161, /2N 10,/
01,1y ), where 2M,1,2N,0 refer to the dimension, and sub-
scripts to the double grading, of the underlying vector spaces
Vooys Viorys Vo »and ¥ 4, respectively, and the symbol
SpO reminds us that the maximal Lie superalgebra is
SpO(2M /2N) where the bosons span Sp(2M) and the fer-
mions span SO(2N) irreps.

Some care must be exercised in establishing a concise
and consistent notation. Boson and fermion operators will be
collectively designated by the operators C ¢, where ¢ = O or
1 refers to annihilation or creation operator, respectively,
and 4 =a or a where the Latin boson index a =1,m,
(—a=l,, — m,) belongs to the boson indexed set B

(2.1a)

and the Greek fermion index @ =j,m, ( — a=j,, — m_) belongs to the fermion indexed set F

aeF, F={a=j,,m,\m, = +j,,+ (j, — ),..., £ Jj, positive half-integer} .
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We define the total index set as / = BUF with 4 =j,, m,
eI( —A=j,, —m,). Finally, C¥ is defined as

Co= (=)™t ), (2.2)
i.e., CY and C are tensor operators under SO(3). Note that
either choice of —, + sign in the phase factor is acceptable
and we will keep track of both in the subsequent discussions.

The number of distinct boson and fermion indices is giv-
en by

M=Z(21+ n, (2.3a)

N=3 @+, (2.3b)
J

and the total number of C¢ operators is 2M + 2N. Here
{C¢, 4el, e = 0,1} forms a well-known Z, graded vector
space with the usual € independent grading defined by
(C)=(a)=0, (C)=(a)=1, (2.4)
i.e., bosons and fermions belong to even and odd subspaces
of the same Z, graded vector space
V(2M o, /2N ,,) = V(2M) 4, ® V(2N) 4, , (2.5)

commutation and anticommutation relations among the bo-
son and fermion operators may be compactly written as

(C5.C5)Y=G%,, ABel, ¢,(=0orl, (2.6)
where the supercommutator ( , ) is defined as
(C5,CH =C5CE—(—DHDBCECS . (2.7)

Here (4), (B) are the grading vectors (one dimensional ) for
C¢ and C%, respectively, ( — 1)@ js the commutation
factor which determines whether (, ) is a commutator [ , ]
or an anticommutator { , }, and G %;, is the Z, graded metric
tensor containing 0, + 1 as its elements. Explicitly,

where

8 =(Co.Cy) = (= 1T _  =g®=pg, (2.9)

B =(Co,Cpy=(—1)"T"8_ ;= —gP= _g.

(2.9b)

N.B.

G4 =0ife=¢ or (A+B)=UA)+(B)=1.

(2.9¢)

The metric tensor G, permits considerable compactifica-
tion of supercommutation calculations.

The Z, graded vector space V(2M ,,/2N,,) may be
extended to a doubly graded Z, & Z, vector space as follows.
The index set I = BUFis extended to I’ = BUFU {*}, and
C3 =C) =e,, the identity operator, is introduced. With
the extended grading

(0,0),
(1,0,

(C5) =((4),0) = { for bosons, (2.10a)

for fermions,
(CL)=(CL)=1(e,)=1(01). (2.10b)

The basis {C¢ |Ael’, € = 0,1} will now span the doubly

graded Z, & Z, vector space V(2M ., |1 0.1y 12N 1.0y [O¢11 )»
(C5,C5)\C% | C? C, C3 Cp where 2M,1,2N,0 indicates the number of basis vectors (di-
mension) in each of the doubly graded subspaces V0,
ce Vioys Vo and V¢, ), respectively.
4 A supercommutator on the Z, @ Z, graded vector space
GH)=| C3 0 8 O 0, V(2M 40,/110.1,/2N 10,7011, ) may be defined as
o —g, 0 O 0
ce 0 0 0 8ap (C,CE)=C5Ch — (=D BCLCy, (2.11)
Cl 0 0 —g, O
and the Z, ® Z, graded metric tensor G &, on the Z, & Z, vec-
(2.8) tor space is given explicitly by
i
Cy C, C§ Cj Cle/\2
c? 0 8ab 0 0 0
(Gdh) = \ : 2.12
- ci | -8 0o o 0o o (2.12)
c? 0 0 0 8op 0
c!l 0 0 —8p5 O 0
Ce, /N2 O 0 0 0 1
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whereg,, and g, are defined in the same way as, e.g., (2.9). Comparing the above definition with Egs. (2.6)-(2.9) we notice
that 4,Bel ' instead of 7 and in the commutation factor ( — 1) ® we have a scalar product (4) - (B) instead of the ordinary
multiplication (4) (B).

The direct product space of a Z, & Z, graded vector space with itself is also a Z, & Z, graded vector space where a typical
element in the space C¢ C% has an induced grading

(C5C5Y=(CY) + (C)eZ, 0 Z, . (2.13)
In particular, consider the operator S §; which belongs to the direct product space, and is defined as a superanticommutator
among normalized basis vectors {( l/f)CA ,Ael’, e =0,1},

ie.,
SEH=((/N2)C5,(1/2)CE), ABel’, =01,
=1/2(C5C4 4+ (= W BCLCY)
=(—1Hrdge (2.14)

Explicitly, we have
HCL.Ch) . 2y s, UADCY ANDC) (12,

(A2)Co cocs CoC) — (=)™ _,, CcoCh CoCy (1/2)c?

B = andc! cic, cicy  CiCh N (A}
(1A2)C8 CciCy CoCL— (=Y ""8_n  (1/f2)CC
an2yc, C.Cp an2)c;,

(1/\2)e, 0
(2.15)
|
The natural induced grading for S %, is given as andif B=D =,
(S5)=(4+B) = (4) + (B)EZ, 0 Z, . (2.16) (84S C*)=<(1/\/§)C§,(1/\/§)C‘é)=52"c-
The evaluation of the supercommutator (2.21)
(S, S0 )=8%S%, — (—1)A+B(C+Digor ge Hence

(2.17)
proceeds by using the super identities for arbitrary Z, ¢ Z,
graded operators P,Q,R,S,

(PQ.RS) = (— 1)@ ®(PR)QS
+ ( _ 1)(P—+—Q)'(R)+(P>'(S)R (P,S)Q
+P(QR)S+ (= 1)+ P®RP(QS),

(2.18)
where
(PQ)=PQ— (— 1) @9gp
and

(QR)=(Q) + (R)eZ, 0 Z,,

leading to
(S%S%H) = (~ D PGLs,

+ ( . 1)(A)'(B)+(C)'(D)Gsf S%ac

+GEST + (— )OO DGy s

(2.19)
In particular, if D = #,
(S5, Tu) = (S, (I/NCE)
— ( _ 1)(A)-(B)Gjoc(1/‘/§)C%
G e (1/42)C (2.20)
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{S¢%,,A,Bel’, ,£ = 0,1} form a Z, ® Z, color superal-
gebra under the supercommutation defined in (2.18), which
is denoted here as

SpO(2M 40,/ V(0,1 /2N 10y /011y ) -

1ll. SUBALGEBRAS OF THE Z, ¢ Z, COLOR
SUPERALGEBRA

The Z, & Z, color superalgebra obtained in (2.22) has a
rich subalgebra structure which is illustrated in Fig. 1. [In
this section we assume that the summation convention for
repeated upper and lower indices is adopted and, unless oth-
erwise stated we assume a,beB, a3k, A,Bel, €,§,0,7 = 0or
1, where B and F are as defined in Eq. (2.1) and I = BUF.]
Various subalgebras (Lie superalgebras or ordinary Lie al-
gebras) are labeled by their conventional names and the gen-
erators for each of them is given. The various subalgebras are
established by either discarding selected sets of the genera-
tors of the big algebra or by forming particular linear combi-
nations of them and projecting the Z, ® Z, grading vector
down to Z, and further to Z,.

There are four chains of subalgebras shown in Fig. 1.

Chain 1:
SpO(2M (00, /10,1y /2N 1,0y /01,1 )

DSpO(2M /2N) DSp(2) @ OSp(M /N)

DU(1)sOSp(M/N)DU(1) 9 O(M) & Sp(N) .
(3.1a)

(2.22)
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P 1
= Sy g5 G}

SDO(ZM(O,O)/J(0,1)/2N(1,0)/0(1.1)) 4

(€S 1
4 “{Sap_* /2

SpO{1/2M) & O(2N+1)

cT 1
} @ {Saﬁ../éc

G
)

SpO(2M/2N)

oS
AB

= (8,5}

1 Sp(2M) & 0(2N)

&S €¢
= () e (sgy)

!s;;(z) ® 0Sp(M/N) U(M/N)

_ ;€S _ A
(@) e 0| - ()

2| 3 SIS TTR)
a X
- (%) @ (Ej)

FIG. 1. Subalgebra structure of the Z, & Z, col-
or algebra.

/
U(1) ® 0Sp(M/N)

A
= (E7,) @ (J,0)

U(1) @ O(M) @ Sp(N)

- (Eh) ey

'

a,Be€F, ABel, e,

AB ¢ A _ CA 1o
Sapr Ep =€ Sep B

{the summation convention is used here).

Jqp) -] {Jab}

a,b € B, g=0o0r1
€$

Q** = ¢ e

€¢ sAB

m
L >

Chain 2:
SPO(2M(0,0) /l(o,1>/2N<1,0) /)
DOSpO(2M /2N)DU(M /N)

DU(1)sOSp(M/N)DU(1) s O(M) ® Sp(N) .
(3.1b)

Chain 3:
SpO(2M 0, /10,1, 72N 10,7011y )
DSpO(2M /2N)DUM) & U(N)
SU(1)eO(M) & Sp(N) .
Chain 4:
SpO(2M 50,/ 10,1, 72N (1,0, /011y )

DSpO(1/2M) @ O(2N + 1)
DOSp(2M) e O(2N)DU(M) e U(N)

DU(1)s O(M) &Sp(N) . (3.1d)

The generalized quasispin algebra Sp(2) appears in the first
chain and the generator Q < is defined as

Q¢=1g"%;,
and the commutation relation satisfied by Q < is
[Q4.07] =1(0°Q +0Q° +6°Q +6Q),
(3.2b)

(3.1¢)

(3.2a)

1195 J. Math. Phys., Vol. 28, No. 5, May 1987

where

eeaE( (1) é)’i'e.,9w=011=0, 601: _910=1'

Explicitly, we have

Q% =Q"=1(M—N)+1i(n, +n,), (3.3a)

Qooz_;_z (— )Imtmacgco_a
1 P Tm
-2 (= y=Frecoco (3.3b)
Qll =iz( _ )[aq:'"aclcl
2 < a —a
_%Z ( _ )J}z?macicl_a ,

(3.3¢)

where n, and n, are the boson and fermion number operator,
a and a refer to boson and fermion operators, and satisfy
commutation relations

[0°.9%] = — 0%, (3.4a)
[e%o"1=+0", (3.4b)
[Q®,Q"] =20°. (3.4c)
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If we now start from the big algebra and look along the
other three chains at the generators for the subalgebras, we
findS <, E 5, J.. appearing successively. The bilinear oper-
ator S %, A,Bel, is really only Z, graded since the second
component of the grading vector is always zero. We define

($53) = (4+B) = (4) + (B)EL,, (3.5a)

where (4) (B) isOor 1 as defined in (2.4). This redefinition
does not affect the supercommutation
(S55.S%)

=(— )(A)(B)G;%S%TD 4+ (- )(A)(B)+(C)(D)G§TDS41;%

+G5SH + (—)OPGES %, (3.5b)

except G 55 is now Z, graded as defined in (2.8) instead of
being Z,® Z, graded as defined in (2.12), (4),(B)€Z,
{S'¢,} generates Lie superalgebra SpO(2M /2N).

The bilinear Z, graded generator E 4 is defined in terms
of the Z, graded generator S §; as follows:

Ef=g“Se, (3.6a)
where g is the inverse of g, = G,
(E“5) =(4+B) =(4) + (B)EL,, (3.6b)

and under supercommutation (1.7) satisfies

<EAB’ECD> — 5BCEAD - ( _ )(A+B)(C+D)5DAECB ,

(3.6¢c)

where 8, € is the Kroneker delta. Here {E “, } generates the
Lie superalgebra U(M /N), which is a subalgebra of
SpO(2M /2N), while the even operators {E “,,E “;} gener-
ate the direct sum of the ordinary Lie algebras U(M)
e U(N).

Define the bilinear Z, graded operators J,, as

Jip =0,.5% =S5 —S%, (3.7a)
where
0 - 1)
(6 _(1 0/’
with grading
(Jup) = (A + B) =(A) + (B)EL, . (3.7b)

Then under supercommutation, (2.7) satisfies

<JAB’JCD>
— ( _ )(A)(B)gACJBD + ( _ )(A)(B)+(C)(D)gADJBC

+ 8scdap — (=) O Pgppdyc . (3.7¢)

Here { J, } generates Lie superalgebra OSp(M /N) while
its even part (Z, graded) generates the direct sum of ordi-
nary Lie algebra O(M) & Sp(N). Since both E“; and J
are defined in terms of S %, the supercommutation relation
for both of them can be easily evaluated by using Eq. (3.5b).
The generators in different algebras of a direct sum algebra
should be both disjoint and commute with each other. We
see that the commutation is often trivially satisfied by notic-
ing one algebra may contain entirely boson and the other
entirely fermion operators, and it is an easy task to show also
[@€J] =0. We have thus obtained the subalgebra
structure of Fig. 1. Of particular interest to us is the chain
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that contains the quasispin algebra Sp(2). Further discus-
sion on quasispin is left to the next section.

1V. PROPERTIES OF THE GENERALIZED QUASISPIN
ALGEBRA

The quasispin operators defined in equations (3.3) and
(3.4) contain both bosonic (B) and fermionic (F) operators
with

0, =0%"=B,+F,, (4.1a)
Q.=Q"=B,FF,, (4.1b)
Q_ =Q®=B_+F . (4.1¢)
The bosonic quasispin operators
B0=—1—2C},C2+M, (4.2a)
2 4 4
1 —m
B+=7§a:(—1)1" «clc' ,, (4.2b)
1 —m
B_=7§(— e~ mcoce (4.2¢)
satisfy the commutation relations
[BoB,.]=+B,, [B,,B_ 1= —2B, (4.3)

of the boson quasispin SU(1,1) algebra®™ while the fer-
mionic quasispin operators

1 N
FOZ_{ZC‘I‘C‘O’—T’ (4.42)
1 P —m
Fo=g2(=DF ™., (4.4b)
1 _—
Fo= -3 (-Drmece, 4.4o
5 2;’ (-1 (4.4¢)
satisfy the commutation relations
[FoF, = +F,, [F.F_1=2F, (4.5)

of the fermion quasispin SU(2) algebra.?!

Thus the operators (Q,,Q, ) form a generalization of
the usual fermionic and bosonic quasispin algebras with the
commutation relations given in Eq. (3.4) being rewritten as

[Q(»Qi ] =+ Qi » [Q+’Q—] = - 2Q0 (4.6)

The generalized quasispin algebra (GQA)) is noncom-
pact with the result that all nontrivial irrep are infinite di-
mensional. The irrep of the GQA may be labeled in terms of
the eigenvalues of the second-order Casimir invariant and
those of the quasispin operator Q,,.

The second-order Casimir invariant for the GQA is de-
fined as

0°=0y(Q—-1)—0Q.0_, (4.7)
where as usual
[0%0.1=[0%Q]=0. (4.8)

Consider an arbitrary n particle state say |#). The action
of @, on |n) is to count the number of particles in the state
(bosons and fermions). Thus

Qoln) = ((M — N)/4 + n/2)|n) . (4.9)

The operators @, and Q_ constitute pairs of creation or
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annihilation operators coupled to zero total angular momen-
tum and thus create or destroy pairs of bosons or fermions of
zero total angular momentum changing the number of parti-
cles in the state by + 2 and hence change the eigenvalue of
O, by unity.

The fermionic part of the action of Q , is restricted by
the Pauli exclusion principle but not for the bosonic part.
Starting with an initial state Q_ can be applied repeatedly
without limit to connect an infinite set of states whereas the
action of Q_ terminates when a state of v unpaired particles
is reached, there being no zero coupled pairs left for @_ to
destroy, i.e.,

Q_[vy=0. (4.10)
In this case we have
Qolv) =((M — N)/4 +v/2)|v) . 4.11)

Each GQA multiplet has a unique lowest state |v).
Consider the action of Q2 on |v). Recalling (4.10) we
have

QZIU) =[Q(Qo—1) — Q+Q—]|U)

S et D)

(4.12)
Hence the eigenvalue of the Casimir invariant Q' may be
taken as Q(Q — 1), where
Q=(M—-N)/4+v/2, (4.13)
where Q may be integer, half-integer, or quarter-integer. The
eigenvalues of the operator Q ? are symmetric under??
0-0'=—-0+1, (4.14)
with Q(Q — 1)->Q'(Q' — 1)>0. All states connected to
|v) by the action Q, will have the same Casimir invariant

and the irrep of the GQA uniquely labeled by @ with the
basis vectors being labeled as

ooy = |M =N v M_N ”>, (4.15)

— +_
4 +2 4 2

where v is the total number of unpaired particles and
n=v+2 i=012,... (4.16)

Within each irrep, i.e., for a fixed value of Q, Q, takes the
values

Q=00+1,0+2,.., (4.17)
corresponding to the basis states
100),10.0 + 1),]0.2+2),.... (4.18)

The GQA is of importance in physical applications in
providing a natural extension of the notions of pairing and
seniority to mixed boson—fermion systems. Indeed in the Ca-
simir invariant (4.7) the term

Voe=F,B_+B,F_
1 LFm, JaFm,
= “Tg(—l) (-1
X(C},CI_GCSCO_“+C,‘,C1_,,C?,C°_a) (4.19)
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gives via (3.12) a boson—fermion pairing interaction whose
eigenvalues are a function of M, N, and v (Ref. 21). Precisely
the same ¥V, was noted in the dynamical supersymmetry

- scheme based on the U(M /N) DOSp(M /N) second-order

chain.” A direct comparison of Q2 with the second-order
OSp (M /N) Casimir invariant confirms that

Q=3T3 I+ (M —N)I(M—N) —1), (4.20)

so that the GQA gives an alternative and more direct insight
into the physics inherent in such models. Beyond this special
(exactly soluble) case, the use of GQA in general permits the
explicit n dependence of matrix elements of interactions to
be expressed in terms of coupling coefficients via the cele-
brated Wigner—Eckart theorem.?!

Finally, it should be pointed out that the sign choice in
(2.2) leads to the two alternative GQA’s (4.1) which are
interchanged by Hermitian conjugation. In particular the
above V. is anti-Hermitian,” even though Q has real eigen-
values. This situation is perhaps not unexpected if the alge-
braic models are regarded as reflecting a truncation of the
true space of states.

V. CONCLUSION

Our primary purpose in this paper has been to demon-
strate the existence of a genealized quasispin algebra that can
arise in supersymmetric systems. In the process a noncom-
pact Z, ® Z, graded color superalgebra SpO(2M /1/2N /0)
has been established. This should allow the systematic analy-
sis of group substructures relevant to the applications of su-
persymmetry concepts to nuclei and other systems.>
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Recently Parr and Ghosh [Proc. Natl. Acad. Sci. USA 83, 3577 (1986)] proposed a variant of
the classical Thomas—Fermi theory of electrons in an atom. They produced a continuous
electron density by introducing the constraint that the integral [z, e ~2*1* Ap(x)dx exists,
where k is determined by the nuclear cusp condition. Their results give improved calculations
of ground state electron densities and energies. The present paper provides a rigorous
mathematical foundation for the work of Parr and Ghosh and converts their results into

theorems. Some generalizations are also obtained.

1. INTRODUCTION

Our goal is to establish rigorously results suggested by
the Parr-Ghosh extension' of Thomas—Fermi theory.?” In
this theory the (approximate) electron density is finite at a
nucleus and satisfies the cusp condition. Our treatment will
be parallel to that of the rigorous conventional Thomas—
Fermi theory, so we begin by reviewing that theory in some
detail.

We shall follow the Euler-Lagrange equation approach
of Bénilan and Brezis,*® whose work was inspired by the
pioneering work of Lieb and Simon,”® who used the direct
methods of the calculus of variations. The work of Bénilan
and Brezis was done in the late 1970’s and is outlined in two
articles by Brezis.>® Their full joint paper® still has not been
completed.

In conventional Thomas-Fermi theory we seek the
ground state electron density p (for a system of N electrons
in R*) which minimizes the energy functional

E)=Tp)+V.(p)+V.(p) ()
on

Dy = {peL "(R?) ‘p>0, f p»dy =
o

peDom(T)NDom(V,,)NDom(V,, )} .

Here 7T(p) represents the kinetic energy, V. (p) represents
the electron-nuclear attraction, and V,, (p) is the electron—
electron repulsion term. One can argue on physical grounds
that the kinetic energy term, which is horribly complicated
as a functional of the density, can be approximated by an
expression of the form

T(p) =cpf p(x)dx
IRJ

for some p > 1, and the classical approximation of Thomas
and Fermi is p = § and ¢, = 3(377)?/%. We will work with
the more general kmetlc energy term

T(p) =f J{p())dy; (2)
R3

) Current address: Department of Mathematics, Louisiana State Universi-
ty, Baton Rouge, Louisiana 70803.
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here J is a convex function on [0, ) satisfying J(O)
=J'(0)=0,J"(r)>0, and J(r) >0 for r> 0. In the most
general case

Ve (P) =f V(y)p(y)dy, 3)
]RJ

where Vis a measurable real-valued operator on R’. One can
show* 10 that a necessary condition for the existence of a
solution to the minimization problem is

VeL! (R?) and ¥V <0 on a set of positive measure. (V)

In the case of an atom with Z protons fixed at the origin the
electron-nuclear attraction is the Coulomb potential

Vix) = —Z/|x|. (4)

We shall restrict ourselves to the atomic case in this paper.
For the electron—electron repulsion term we take

loc

p(x)p(y) dx dy. 5)
Ix =yl
Usually one takes Cpp = 1, but the Fermi—Amaldi approxi-
mation'' of ¢,, = (N — 1)/N also gives interesting results.
This approximation essentially agrees with ¢, =1 for N
large and vanishes for N = 1, when no electron-electron re-
pulsion is present. If we define the operator B by Bf
= (1/4m) (1/|-])+f, then B= ( —A)"', and V,, can be
expressed in the convenient form

Vee (p) =

V.(p) :27rcec,J p(x)(Bp)(x)dx. (6)
RJ

The minimization problem was first solved rigorously
by Lieb and Simon”* with J(r) = ¢5,; 7 */* and Vinaclass of
potentials including (4). Benilan and Brezis* then solved a
more general problem [with J as in (2) and a more general
potential V'] by deriving the Euler-Lagrange equations cor-
responding to the energy minimization problem, converting
those equations into a form involving nonlinear elliptic par-
tial differential equations, and solving the resulting problem.

The following problem is the Euler-Lagrange problem
associated with the minimization problem. Here T is given
by (2), V,, by (3),and V,, by (6).

Find (pyA)eD y XR satisfying
J'(po) + V+kBp,+A =0 ae. on [p,>0], 7
J'(po) + V+ kBp,+A>0 ae. on [p,=0],
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where
D} = [pEL '(R*)|p>0 and f p(y)dy=N],
.

and k = 47c,,.

Thomas—Fermi theory, which is an approximate theory,
possesses interesting features, some of which may be termed
“flaws.” The following theorem shows that the Euler—La-
grange problem is not equivalent to the minimization prob-
lem in the generality of the present context.

Theorem 1:**'° If p, is a solution of the minimization
problem (1) on D,, then there exists AR such that (py,4)
solves the Euler-Lagrange problem (7) on D, X R. Con-
versely, suppose (pp,4) solves (7) on D X R and suppose
there is a KeR such that

JHIK —V(x)],)el '(R%); (8)

here J * is the convex conjugate of J, and a, is the positive
part of the real number a. Then p,, is a solution of (1) on D,,.

One can show that if (8) does not hold, no solution of
the minimization problem can exist.>*'° If J(r) = cr?and ¥
is the atomic Coulomb potential (4), then (8) is equivalent
to p> 3. It is also known that the Euler-Lagrange problem
has a solution for p > 4. Thus, if § < p<3, there is a density p,
which satisfies (7), but for suchp we haveinf E(p) = — .

Another feature, and indeed a fault, of Thomas—Fermi
theory lies in the fact that the solution density p, diverges at
an atomic nucleus. To see this with J(#) = cr? and V the
atomic Coulomb potential given by (4), we observe that
V(r) ~const ¥~ as r—0 and that Bp, is bounded as r—0.
But if p,, satisfies (7), then

po(r)P~'~constr~! as r-0,
that is,
Po(r) ~constr=®=1 a5 0. 9

In particular, py(7) —» oo as r—0. This is undesirable from a
physical point of view; the quantum mechanical ground
state density of an atom should be continuous and have a
finite maximum at the origin (that is, at the nucleus). The
correct behavior for the quantum mechanical electron den-
sity is known to be, to first order in #,

—2Zr

(10)

Using c,, = 1 in (5), Bénilan and Brezis*® prove that
the density p, that solves (7) has compact support for a
positive ion, i.e., for N < Z, and the support is R* for N = Z.
Moreover, if we use the Fermi-Amaldi approximation in
(5), we know that the density which solves (7) has compact
support for the case of a neutral atom as well as for a positive
ion, in fact, for N< Z + 1 (see Ref. 10). (The support is R*
for N=2Z 4 1.) Thus we expect to have Vp,(x)—0 as
|x| = oo. This leads naturally to the condition that {5, Apg
should vanish. However, this condition on Ap,, does not fol-
low from conventional Thomas—Fermi theory. The above
mentioned features and flaws may be remedied by imposing
a continuity constraint on the domain of the energy func-
tional (1), as was noted by Parr and Ghosh' in the special
case J(r) = cs5;3°">. In this paper we shall study the effect of
implementing the continuity constraint in a more general

p(r) ~const e as r—0.
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and more rigorous mathematical framework. The density p,
which solves this amended Thomas-Fermi problem dis-
penses with the previously mentioned curiosities and has
several interesting properties of its own.

Il. THE EULER-LAGRANGE PROBLEM
Let ¥ be given by (4) and define

E(p) =JJ(p) +J Vp + 2me,, prp

on the domain

(1)

p>0,

Dyy = {peL YR NL = (R?)
f pNdy =N, ApeL L, (R*),
-
“Vp(o) =07, '[e_ 2kixIAp(x)dx = MeR,

peDom(T) "Dom(V,,) "Dom(V,, )}.

We define “g( o) = 0” to mean that for all €> 0 there is a
Borel set A4, CR® such that meas(4,.) = f, dx< o and
lg(x)| < eforall x¢d, . Itis easy tosee that E(p) on Dy ,, isa
convex functional. If p, were the minimum of E, then we
would expect E'(p,) = 0. However, this is not precise; we
have three constraints to consider.

Let A,,4,,MecR, and define

Ey(p) = JJ(p) +f Vp + 2mc,. prp +/11(fp - N)

+/12(Je_2" MAp (x)dx — M)

on & ,, = U{Dy,,: N>0}and with V' given by (4). Apply-
ing the divergence theorem and using “Vp () = 0" we see
that

J‘e*Zk"“Ap(x)dx=fAe_2kb‘|P(x)dx’

and so

E,(p) —-—JJ(p) +j Vp+27rceerBp+/ll(J-p—N)

+12[J (4k2 - %)e‘z""p(x)dx — M]

If p, minimizes E,, on Dy, then, formally,

Ew(p) = Ex(po) + (E 4 (po), p—po) +o0(p—po) By
the convexity of the functional E,, on Dy ,,, we expect p, to
be the unique solution of

0=FE} (py) =J (py) + V+ 4mc..Bp,y

+ A+ A [ (42 — 4k /|x|)e 2], (13)

Since E;, is independent of M, we call it E’ for short. We
choose A, = Z /4k so that (13) reduces to

0=J"(po) + ( —Z/|x|) + 4mc..Bpo + 4,
+(Z/|x])e = * X 4 Zke I,
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This gets rid of the singularity of the potential at x = 0.
However, we must also consider the constraint p>0. Ac-
counting for this leads us to the following Euler—Lagrange
problem.
Problem: Find (po,A)eU{D } », XR: M >0} such that
J'(pg) + V4 4mc,.Bpy+A4 =0 ae on [py>0],
J'(pg) + v+ 47c,,Bpy+A>0 ae. on [p,=0],
(14)
where

V() = (= Z/x[)(1 — e~ W) 4 kZe= I (15)

and

D = [peL (R*)NL = (R?) |p>0,

[p=n. %p(e) =0,

f e X Apo(x)dx = MGR}.
RJ

Note that ¥ also satisfies condition (V) ; and letting
|x| - o in (14) shows that A>0.

Theorem 2: Suppose p, minimizes (11) on Dy ,,. Then
there exists A€R such that (p,,A ) satisfies (14) on U{D y ,,:
MeR}. Conversely, if (pg,A)€eD 4, X R satisfies the Euler—
Lagrange problem (14) and if there is a real number K with

J*[(K — V(x)), ]eL (R?), (16)

then p, minimizes (12) on D, ,,.

The proof of the theorem is essentially the same as the
proof of Theorem 1. We omit the details.*1°

Corollary: Let J(r) = crf for 1 < p < . Then the mini-
mization of (12) on Dy ,, is equivalent to solving the Euler—
Lagrange problem (14) on U{D} ,,: MeR}.

Proof: 1t suffices to show (16) holds. Now J(r) = cr?
implies J *(r) = & 9. Choose K <0. Then (K — ¥V(x)), =0
for |x| >R for some sufficiently large R, since T/(x) —0as
|x] = . If we observe that VeL = (R?), we find that

JR]J*[(K— V(x)), Jdx =af

B (0)

(K — V(x)),17dx

R
<61f [V(r)+ K |17 dr
[¢]

<[Vl + K[ IR <. O
The value of M is really irrelevant in Theorem 2 and its
corollary. Let p, minimize E(p) given by (11) and belong to
Dy, for some MyeR. Then for some AR (py,A) satisfies
the Euler—Lagrange problem. Conversely if (0,4 ) satisfies
the Euler-Lagrange problem, then necessarily M defined by
M = fp e ¥ Apo(x)dx exists as a real number, and if
(16) holds, then p,eD,, ,, for this M. Ifp : minimizes (12) on
Dy, for j=0,1, then (p;A;) satisfies (14) on U{D } -
MeR} for some /IjeR, 7 =0,1. But in the next section we
shall show that solutions p, of the Euler-Lagrange problem
are unique. Thus p, = p, and My, =M.
The functional E(p) given by (11) is a strictly convex
functional on the convex set U{D,, ,,: MeR}, so it will have
at most one minimum. If it does, this minimum will belong
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to Dy ,, for precisely one value of M. Thus M is really deter-
mined by the problem through the constraint that
Sre € "2 Ap, (x)dx is finite. In this sense the value of M is
irrelevant.

{ll. THE PARTIAL DIFFERENTIAL EQUATION

Letu= —V— 47c,, Bp,. Rearranging terms in (14),
we seeJ '(py) = u — A a.e. on [p,> 0]. Define
(J")~H(r), forre(0,00),
I'(r) = 17
() [0, for re( — «,0]. (7
Applying (J') ™' to (14) yields
po=T(u—A4),

and applying — A to the definition of u gives
— Au+4me, T'(u—A) = AV.
Thus we arrive at the following nonlinear elliptic problem

associated with the Euler—Lagrange problem (4) on Dy, ,,.
Problem: Find ue.#>(R*) and A€R such that

— Au + 4me,,T(u — 1) = AV,
(18)

N=f Nu(x) —A)dx, T, (—A)=c< o,
R

where

Cu() — AL "(R)NL =(R%).

Here I'’, ( — A) is the derivative of I' from the right at
—A.

The Marcinkiewicz spaces (or weak L7 spaces)
#P(R?) are defined as follows:

M*(R*) = {u|ueL . (R*) and |ju|| ,, <o},

where

Null . =min[ce[0,oo] f lu(x)|<c meas(4)"?
A

for all measurable sets 4 CR> of finite measure {,

p+g =1

There are several basic properties of these spaces which
we record as Proposition 1 below. For a more complete treat-
ment and for the proofs, one may consult Ref. 12.

Proposition 1: (i) The function x - x| ~* belongs to
HYHR?) forO<a < 3.

(ii) If Ee#?(R’) for some p, 1<p< o, and if

feL '(R?), then

E «f | defined by (E *f)(x) =J E(x —J’)f(,V)dy}
R]

belongs to .#7(R*) and
IE |l . <IEN Lol
(1ii) Suppose
uel | (R?), AueL '(R?),

and

lim |u(nx)|dx =0. (19)

n—owo Jig)x|<2
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Then u=B(—Au). In particular, wuc#’(R?),
Vuel 2R P, ull o <CollAul,, and Vil
<Col|Au|| ..+ for some constant C, independent of u.

(iv) Let uc.#°(R*) and AueL '(R®). Then for every £
in ¢, ={&CHR)NL=(R)|E'(x)>»0 for all x and
£(0) = 0}, we have

(£ (w))'*|Vu|eL *(R?)

and

Jg’(u)|Vu|2+J(Au)§(u)<0-

Note that if ueL ' (R?) or if uc.#>(R?), then u satisfies
(19).

Proposition 2: Let A€[0, ). Suppose u is a solution of
(18). Then there exists a solution (pg,4) of the Euler—La-
grange problem.

Proof: Define py =T (z — ) a.e. [where T is defined
by (17)]. Applying B=( —A)~! to the first line of
(18)  yields wu+ 4mc, Bpy= — V ae, that s
u= —V-— 4irc,. Bpy. Then

po=T(— V- 4rmc,,Bpy, — A)
= (J)"'[( =V —4mc,Bpy—A) . ].

We apply J' to both sides of this equation and rearrange
terms to obtain (14). It follows immediately that py>0 a.e.
and (g po(¥)dy = N. Since AVeL '(R*), we must have
AueL '(R?). By Proposition 1 (iii) we see “Vu( o) = 0”.
But Vp, =T"(u — A)Vu, so that
“Vpolow) =T"u(w) —A)Vu(w)
=T, (—A)Vu(e)=0"

since I'’, ( —A) < oo. Finally, I'(# — 1)L © (R?) implies
poL = (R?). Thus we have poeDy .

Remark: In conventional Thomas—Fermi theory, i.e.,
¢.. = 1, the condition I'", ( — A1) < « is always satisfied if
N<Z. If we use the Fermi-Amaldi approximation of
ce=(N—1)/N, then I’ (—A)<ew holds for
N <Z + 1. We shall see below that A = O corresponds to

[Z, ifc,, =1,

Z+1, ifc,,=(N—-1)/N.

When J(r) =cr? for p> 1, the condition I'", (0) < oo is
equivalent to p<2; T'", ( —A4) < o always holds for p> 1

and A > 0.
Freeze A>0 and set

N=Zc;'=

B(u) =4mc, I'(u —A), (20)
where I is given by (17). A simple calculation shows
AV =4k 3Ze 2, (21

and thus AVeL '(R*) NL = (R%).

Proposition 3: Let 5: R —» R be a continuous, nondecreas-
ing function with $(0) = 0. Then for every non-negative
radial function L '(R*) NL = (R?) there is a unique solu-
tion ue.#*(R?) satisfying

—Au+Bu) =f inR> (22)

Moreover, f(u)el '(R*) NL *(R?) and ||B(w) . <|If]..-
Proof: Under the above hypothesis on 5, if feL '(R?),
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then a unique solution ue.#>(R*) of (22) exists and
B(u)eL '(R?) (cf. Ref. 12). Let &% & (R?). Then Proposi-
tion 1 (iv) implies

J Blu)é(u)dx< f fEu)dx
R? R>

for any &€ # . Take £(7) = (sgn )B(1) 9! for 7R and
large q. Then

Og(fwﬁ () (u(y))dy)”"
) (J“‘ pluold )Vq<( Lﬁ(u(y))dy)l/q

<[ vrpuwnea)”

Then by Holder’s inequality

IBCOIF<IF Il 1Bl <IN BN
where 1/g + 1/¢" = 1. It follows that

B¢, <If1l,-
Letting ¢ — o, we see that B(u)eL = and

18] <. - (23)

Since fis a non-negative radial function, we can con-
struct a sequence {f, } C ¢ ¢ (R?) such that £, —f a.e. and in
L "(R?) with ||f, || . <|If]|.. - Let u,, be the unique solution of
— Au, +B(u,) =f,, Au,eL'(R?), u,e#>*(R’), and
B(u,)eL '(R*). Then there exists a subsequence {u, }
such that u, —u and B(u, )—B(u) ae. and in L, (R®),
where u is the solution of (22) (cf. Refs. 4-6 and 10). By
(23), |IBCu, )| <|Ifs]|. - Passing to the limit we get

Remark: As Gallouét and Morel noted in Ref. 13, if fis
in addition radial nonincreasing (resp. radial decreasing),
then the solution u of (22) is also radial nonincreasing (resp.
radial decreasing).

In the present context we apply Proposition 3 with
B(r) =4mc, T (r—A) and f= AV. 1t is clear that both B
and f defined in this way satisfy the hypotheses of Proposi-
tion 3. Thus we have a unique solution u, €.#*(R*) of (18)
for each A >0.

Theorem 3: Let J(r) = cr’with4<p<2and V' the atom-
ic Coulomb potential (4). Take N, = yZ where

» [1, ife, =1
V=Ce Z\N/(N=-1), ifc, = (N—1)/N.

Then the minimization problem [for (12)] has a unique
solution p, for 0 < N<N, and no solution for N > N,. More-
over if 0 < N < N, the solution p, has compact support (and
the assumption that p<2 can be omitted). Finally, for
0 < NN,

—2Zr

Polr) ~const e as r—-0. (24)

Proof: Under the above hypotheses, the preceding dis-
cussion shows there is a unique solution %, of the first equa-
tion of (18). If weletp, = I'(u; — A), Proposition 2 shows
we have a solution of the Euler-Lagrange problem, and thus
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we have a solution of the minimization problem by the Cor-
ollary to Theorem 2. Next set

N =f D, (x) — A )dx.
-

The existence and nonexistence parts of the theorem follow
from the next lemma.

Lemma: The function N: R* -R™ is nonincreasing,
continuous and

lim N(A) =0.

Ae o
In addition N(A) is strictly decreasing on {4: N(4) > 0} and
Ny,=N(0)>0.

The proof of this lemma is analogous to that of Lemma 7
in Ref. 10 (cf. also Refs. 5 and 6). If 0 <N< N, then
N=N(A) for some wunique A>0, and so
DNu (x) —A)-»T(—4)=0 as |x|- w0, N=N, corre-
sponds to A = 0.

The inequality N,>¥Z comes from the observations
that fAu,>0,

— Auy + dmc,.p, = AV, J- AV =4r2Z,
RJ

which follows easily from (2.1). The upper bound follows
from the fact uy(x) ~c/|x| as |x| - w0, and that p>4.

It remains to show that (24) holds to first order in r.
From (14) near r = 0, we have
pe,ph= () —(Z /1) (1 —e~ %)

— kZe=**" 47, Bp, + A =0.
We note that Bp, is an even function of ». Consequently if we
expand it in a Taylor series about = 0, the first-order term
in r vanishes. Likewise there is no first-order contribution

from the Lagrange multiplier term A. From the Taylor series
expansion for e = 2*"

we see
(Z/r) (1 —e~ %)
= 2Zk — 2Zk *r 4 (terms of higher order),
Zke ™ **" = Zk — 2Zk *r + (terms of higher order).
If py(r) satisfies (24), then to first order in » (14) becomes
—2¢,p00(0)? " '(p — NZr = —4Zk?r.
Choosing

k= [(c,p(p — 1)/2)po(0)?~']"2 (25)
then leads to the desired behavior at the origin.
This concludes the proof of the Theorem. O
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Note that for p = 3, (25) reduces to
k — [gc5/3p0(0)2/3] 1/2’

which is the k obtained by Parr and Ghosh.'
The Parr—Ghosh constraint

f Ap(x)e‘”‘""dx=f Ale=*Mp(x)dxeR (26)
R R

forces the ground state electron density to be a bounded con-
tinuous function. As shown above, this is equivalent to re-
quiring that
f r~ly(r)e = *p(x)dxeR 27
RJ
with
y(r) = 4k?*r — 4k. (28)

But the constraint (27) can be imposed with other choices of
y which will ensure that the density is bounded and contin-
uous and satisfies the nuclear cusp condition. Thus (26) is
not a “‘canonical constraint.” It would be of interest to know
what further physically motivated conditions make a choice
of ¥ unique. And if this can be done, would the unique ¥ be
the Parr—Ghosh y given by (28)? This is an open question.
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A number of results are presented involving the plasma dispersion functions appropriate to
waves in weakly relativistic, magnetized, thermal plasmas. These results include generating
functions, series, integral forms and interrelations, and several useful approximations.

I. INTRODUCTION

The dielectric properties of magnetized plasmas are of
interest in studies of cyclotron emission, absorption, disper-
sion, and instability in physical situations as diverse as those
pertaining to tokamaks, magnetic mirrors, planetary and
stellar magnetospheres, and solar flares. (A list of references
to these applications was given in Ref. 1.) In the case of
weakly relativistic, thermal plasmas the relevant dielectric
properties can be expressed in terms of a class of relativistic
plasma dispersion functions (PDF’s) whose properties were
reviewed and extended in Ref. 1.

The purpose of the present work is to present, as briefly
as possible, a number of results involving PDF’s that have
been obtained since the publication of Ref. 1. These results
include several series and integral relationships, a family of
generating functions, and a number of useful approxima-
tions. The approximations, in particular, are of interest in
studies of Bernstein waves and magnetized Langmuir waves
while the exact results significantly add to the known store of
calculational tools available when working with PDF’s.

Il. EXACT RESULTS

A number of series and integral relationships involving
the PDF’s are derived in this section. Results from Ref. 1 are
indicated by the prefix I.

The most commonly discussed relativistic PDF’s are
the Dnestrovskii functions® of index ¢, which may be written
in the form!?® (1.84)

o« —1,—u
F,(2) = — fdu”q ‘. (1)
I'(g)Jo u+z

Generating functions for families of Dnestrovskii func-
tions may be obtained by substituting (1) into the series

© ¥ 3
S(gh) = .zoh—r(f"f—”—Fm(z). 2)
e !
Provided 4 < 1 and ¢ > O this step yields
S(g,h) = [T(g)/(1 —h)*='1F,[z(1—h)]. (3)

Together, (2) and (3) yield a generating function for the
functions F, , ;(z).

Dnestrovskii functions with half-integer index are the
ones of most interest in plasma physics. Inthe caseg = 4, (3)
may be expressed in terms of known functions

» New address: Department of Astrophysical, Planetary and Atmospheric
Sciences, Campus Box 391, University of Colorado, Boulder, Colorado
80309-0391.
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S(%,h) —_ (ﬂ/ZI/Z)eZ(l—h) erfc[zl/Z(l _ h)l/z] (43.)
= (—ir'?/2/)Z[i22(1 - h)'?], (4b)

where Z is the PDF of Fried and Conte.*
A further result follows from (2) if we take the limit
h-»1, in which case (Ref. 5, Eq. 6.1.17)

“dyvi—!

Sgl)y=22"" ———

(g o v+1
=7z7"'csc(mg), O<Reg<l. (5)

The Shkarofsky functions® are defined

(= dt ) at? ]
a) = — —_— - . 6
¢ (2:a) 1_[) - it)qexp[tzt - (6)

These functions contain the Dnestrovskii functions as a spe-
cial case with F, (z) = ¥ (2,0).

The Shkarofsky functions can be written in a form anal-
ogous to (1) by the use of the identity [Ref. 6; (1.9)]

F

F,

=) a_]
— Fersz—a),

F,(z,a) = e‘“z
i=0J
which leads to

?q (z,a) =a(l~q)/2e—a

) (7

XJ-ooduu(q— 1)/26,—141(]—1 [2((11{)1/2]
(] u+z—a

where I, _; is a modified Bessel function. If z and g are real
and z < a the contour of integration in (7) is chosen to pass
above the pole to reproduce the known result [Ref. 6; Eq.
(1.43)] for Im F# _ (z,a).

The theory of Bernstein waves requires the introduction
of a class of functions more general then F, (z) or ¥, (z,a).
These functions are defined [ (1.62) and (1.63) ]

R (z,al,8) = —ifwl——e""
o (1 —it)
XI, (A)explizt —at?/(1 —it)], (8)
R, (z,A,5) = R#,(2,04,5), 9

with A=A /(1 —i1).
Substitution of the sum

o

S L(A)=e

§= — oo

into (8) immediately yields the result
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| S Z,(zady) = F(za). (10)

Jj= —

A number of integral relations between Shkarofsky and
Dnestrovskii functions are known. These include the follow-
ing [(1.80) and (1.86); Ref. 3]:

f,(z,a):——z— du w1
k)
Xexp( — u?)F ,_, (z+ u’,a) (11)
:ﬁ“/sz du
Xexp( — u¥)F,_,,(z+u*—2a"%u).  (12)

These formulas can be extended to the functions &, and R,
with the aid of the identity (1.70)

R (z,a,4,8) = ZJ dx x exp( — x?)
0

XJ2LQ2A)' X7, 1 (z + xa). (13)

If (11) is substituted into (13) and the order of the resulting
integrals is reversed we find

Ri(z,a,A,8) = % A du u**~exp( — u?)

XK, _(z+ 1P ads). (14)

Similarly, substitution of (12) into (13) and reversal of the
order of the resulting integrals yields

R (z,aA,5) = ﬂ_l/zf du exp( — u?)

XR,_1p(z+u*—2a""uds).  (15)

1. APPROXIMATIONS

Under some circumstances the expressions (8) and
(13) for the functions &%, can be quite difficult to evaluate
numerically and to work with analytically. It is therefore of
interest to assemble a set of approximate forms of the func-
tions &7, which avoid these difficulties. Such approxima-
tions have already been found useful in the theory of Bern-
stein waves.”'°

We generalize the work of Robinson® by noting that
each of the asymptotic forms of %, and R, is of the form

R (z,al,s) =e (A TG, (2,a4,9), (16a)
RI(Z,/{,S) =e_AIs (/I)GI(Z,/{,S), (16b)
G, (z,A,5) = & (2,0,4,9), (16¢)

where &, and G, are linear combinations of Shkarofsky
functions and Dnestrovskii functions, respectively. Robin-
son® proposed an approximation of the form

N
G(zads) = ¥ ¢;(A48)F o, (z,), (17a)
j=1
with
N
ch (A,s) =1. (17b)
j=1

The function ¥, is not strongly sensitive to the exact form of
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the coefficients c; (4,s) since the functions .5, depend only
weakly on ¢g. Robinson®'® used the following approximation
with a = 0 in studies of Bernstein waves

Y (zalds) =F,, zayexp{ — |1 ]/(s+ 1)*}

+ .7 ,(z,a)[1 —exp{ — |4 |/(s + 1)?}].
(18)

This approximation reproduces the correct limiting forms'-®
for large and small |4 | with a fraction error of order / ~'. On
the principal branch, the fractional error in (18) is propor-
tional to |z| ~'and |a| ~!/?for |z|> 1 and |a| > 1, respectively.

Alternative approximations to the integral (8) may be
obtained by introducing the Debye approximation for I, (A)
(Ref. 5, Eq. 9.7.7),

I(Aye “=~H*/(2m)'?(s* + A4, (19a)
with
2/2y1/2

s 1+ (1 + A¥/s)12
Upon approximating I, (A)e ~* to first order in the quantity
it, (8) can then be written

© —A
'@I(Z’a,/l,s)z —lf dt(e IS (/I)
(4]

1 —ir)s®

Xexplizt —at?/(1 —it)]

=e_;‘1x(/1)3_‘~q(,1,x) (z,a), (20)

with

gA,s) =1+ (P + A2 A —A%/2(s* + A %). (21)
Although (20) is somewhat difficult to evaluate numerically
for arbitrary values of ¢, this expression reproduces the cor-
rect asymptotic behavior of %, and has proved to be of use in
analytic work on Bernstein waves.!' We note that the final
term in (21) arises from approximation of the factor
(s*+ A?)~"*in (19a).

The accuracy of the expression (20) is better than that
of (18):theappropriate limiting forms for |4 |>1and |1 | €1
are reproduced exactly by (20) while, on the principal
branch, the fractional error is proportional to |z| ™', |a] ~'/?
and/ ~'for |z|> 1, |a|> 1, and /> 1, respectively. If /s fixed,
the largest errors occur when |a| is small; in this case a nu-
merical analysis yields maximum errors of ~20%, ~ 10%,
and ~ 6% forz> 0and s small with/ = §, ], and 3, respective-
ly. In each case the largest errors occur for z< 1.

An alternative approximate expression for &7, may be
obtained by evaluating (8) using the Debye approximation
(19a) and (19b) and the method of steepest descents. This
gives

R (z,a,A,5) ~ — if dte * (1)exp(ift — at?)

(o}

= —Lla e L (M)Z (JBa"?),  (22)
with
2 2 2 2 2
a:a+il-—/1+ s+2}: _ACGsT 424 ),
2 2 +AN A
(23a)
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A« 2
242467
The final term in each of (23a) and (23b) arises from ap-
proximation of the factor (s* + A2)~'/4 i

B=z+I1+ (+AHV2_1 (23b)

in (19a). Since it
involves only Bessel functions and the Z function, (22) is
simpler to evaluate numerically than (20), but is valid only
on the principal branch of #,. This is not a serious disadvan-
tage since the principal branch is the one of interest in most
applications. Equation (22) generalizes a similar result for
F , (z,a) obtained by Maroli and Petrillo'? [Eq. (1.38) ] and
has fractional errors of order / /2, |a|~"/% and |z| ™! for
I>1, |a|> 1, and |z| > 1, respectively. This approximation is
the least accurate of those considered here but is qualitative-
ly correct and is useful for semiquantitative work because of
its relatively simple functional form.

IV. SUMMARY

We have obtained a number of exact and approximate
results involving those relativistic PDF’s which are appro-
priate to the description of cyclotron waves in weakly rela-
tivistic thermal plasmas. The exact results consist of a family
of generating functions for the Dnestrovskii functions and a
number of series and integral relations involving these and
more general PDF’s. Approximations are given for the
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PDF’s relevant to the description of Bernstein waves and
other large-wave-number cyclotron waves; some of these ap-
proximations have already found application in analyses of
such waves.

'P. A. Robinson, J. Math. Phys. 27, 1206 (1986).

%Y. N. Dnestrovskii, D. P. Kostomarov, and N. V. Skrydlov, Sov. Phys.
Tech. Phys. 8, 691 (1964).

*A. C. Airoldi and A. Orefice, J. Plasma Phys. 27, 515 (1982).

“B. D. Fried and S. D. Conte, The Plasma Dispersion Function ( Academic,
New York, 1961).

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1980).

°I. P. Shkarofsky, Phys. Fluids 9, 561 (1966).

7A. Airoldi-Crescentini, E. Lazzaro, and A. Orefice, Proceedings of the 2nd
Joint Grenoble—Varenna Symposium on Heating in Toroidal Plasmas
(CEC, Brussels, 1980), p. 225.

M. Bornatici, C. Maroli, and V. Petrillo, Proceedings of the 3rd Joint Var-
enna—-Grenoble Symposium on Heating in Toroidal Plasmas (CEC, Brus-
sels, 1982), p. 691.

°P. A. Robinson, “Dispersion of electron Bernstein waves including weak-
ly relativistic and electromagnetic effects. I. Ordinary modes,” J. Plasma
Phys, in press.

'9P. A. Robinson, “Dispersion of electron Bernstein waves including weak-
ly relativistic and electromagnetic effects. I1. Extraordinary modes,” J.
Plasma Phys, in press.

"'P. A. Robinson, “Weakly relativistic dispersion of Bernstein waves,” sub-
mitted to Phys. Fluids.

12C., Maroli and V. Petrillo, Phys. Scripta 24, 955 (1981).

P. A. Robinson 1205



Critical exponent of susceptibility for a class of general ferromagnets
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A “rigorous proof™ is presented that the critical exponent y of the susceptibility y takes its
mean field value in d > 4 dimensions for ferromagnets with single spin measure in the Brydges—
Frohlich-Spencer class, modulo a numerical calculation of a certain function I(d) of
dimension d. This class of ferromagnets contains, for example, the Ising spin model and lattice

scalar @ * model.

I. INTRODUCTION AND RESULTS

In this paper we consider one-component lattice scalar
field or spin models defined on the hypercubic lattice Z .
The n-point lattice Schwinger or correlation function is de-
fined by

S, (Xppex, ) =A{@(x)@(x,))

[[ avie(x))

xcZ?

1
Xexp[— D Jx,m(x)qp(y)]

2 ez
Xe(x)@(x,), (D
where dv is the single spin measure and Z is the partition
function. Here ¢ (x) denotes an (unbounded) spin variable
at site x. In the following, we restrict our attention to the
ferromagnetic nearest-neighbor interaction.
Joy =8 15 J>0. (2)

In addition, we assume that the single spin measure belongs
to the BFS (Brydges—Frohlich-Spencer) class.! That is, the
single spin measure is written in the form

avip(x)) = exp[ — V(p(x)*)]dp(x), (3)

with the potential function V(g ?) satisfying the following
condition:

V"(x)>0 for x>0. (4)

:Z—]

For example, the scalar ¢ * model, with
Vip?) =Ap* +op? A>0, oeR,

and the Ising model are obviously in the BFS class. [ Note
that ¥(x) is not necessarily a polynomial in x.]
We define the connected four-point function by

Ui(xyseexy)
=S4(x15000X,) — 85(x,%,)85 (x3,%,)

_Sz(xpx3)S2(x29x4) —Sz(xpx4)Sz(x2sx3)- (5)

* Fellow of the Japan Society for the Promotion of Sciences. Address after 1
April 1987: Department of Physics, Faculty of Science, Nagoya Universi-
ty, Chikusa-ku, Nagoya 464, Japan.
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It is expected that, in d > 4 dimensions, the mean field
theory is exact and critical exponents take their mean field
values. In fact, we can prove the following statement rigor-
ously modulo a numerical evaluation of a certain function
I(d) [defined by (14)] of dimension d.

Theorem>?: The critical exponent of the susceptibility
takes its mean field value, i.e., ¥ = 1 in d>5 dimensions for
one-component lattice scalar models defined above.

In order to prove ¥ = 1, we must show that there are
constants ¢, ¢, such that

a —1
< — ),;J <y (6)

In fact, integrating out this from J ( <J,) and J, and taking
account of y(J) ~ '10 as J 1J,, we obtain

(. =Ny~ (WD =), )]

which implies ¥ = 1. Since

d 1
o9 1 s

EY; 2 <¢7(0)¢’(-x2), ¢7(X3)¢(X4)>

X3,X3,X4
Xy —xq| =1

27 z

Xy X3 X4

{U(x1,0000x4)
2 — x| =1

+ (@(0)@(x3)) (@ (x,)P(x4))

+ (@)@ (x)) @ (x)@(x3))}, (8)
we obtain

3 1
_i=2d+7)(—2 S U0xx3x). (9)

aJ

X2 X3 Xg
[X3 — xq] =1

Hence y>1is derived for any d by the Lebowitz inequality>*
U,<0 with ¢, = 2d. (We omit all the details about the infi-
nite volume limit, see, for example, Sokal.®)

Now, in order to show the converse, we need an appro-
priate lower bound on U,. The following inequality due to
Aizenman and Frohlich?? gives such a lower bound:
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U,(x4,...5x4)
> — E [S2(x,,z)Jz‘z,Sz(z’,x2)Sz(x3,z).[,zuSz(z”,x4)
z,z',z"eZd
+ two permutations] — E, (x,,...,x,), (10a)

where the sum runs over all the lattice sites and E is the
“error term”

E (x1,.00X4)

=6x3,x4 z Sz(xpxs)ng,z'Sz(z’,xz)Sz(x:;,xﬁ

7eZ?

+ 65, 5, 52(x1,x,) Z So(x1,x3)5, 2 S2(2" x4)

z7ez?
+ 5x,,x2 5x3,x. 5xl,x3S2 (x X1 )SZ (x3’x3 )
+ two permutations. (10b)

Inequalities of this type can be proved®™* for lattice scalar
models with the potential function satisfying condition (4).

Note that ¥ = 1has been proved for ¢ * models in Refs. 3
and 7. Its proof is based on the Griffiths—Simon representa-
tion and hence its generalization to other scalar, e.g., @ °,
models is not clear at present. On the other hand, using the
inequality (10), ¥ = 1 can be proved for all scalar models
satisfying (4), as is announced in Ref. 2. Because its com-
plete exposition has not been found in the literature, we find
it worthwhile to give its detailed proof in this paper. For the
present achievement of the proof of the mean field properties
for other critical exponents, see Ref. 8.

1l. LOWER BOUND ON {3y~ /3|
Substituting inequality (10) into (9), we obtain

o
aJ
1
>2d — 7.]2/1/_2 z Z {Sz(XI,Z)
ber s xal = 1\ 22 =1
jz—z"| =1

X 85(2',%,)8,(x3,2)8,(2" x,)
+ two permutations} + E,(x,,....x,) | (11)

By the translation invariance and the Fourier transform,

TABLE 1. Integrals I(d;1), 1(d;2), and I(d).

{Sz (xpz)Sz (zlrxz )S, (x3,z)S2 (z" X4)

> X

X2, X3, X4 2,z',z"
|x; — x4 =1 jJz— 2| =1
lz—2z"| =1

+ two permutations}

2 ddP pz|’ 2 ip ?
— 2d ere + er?
X J(zw)d( 2 Z )
lz| =1 |z} =1
X{Sz(p)}2
(22 1y 3 Bapy
<6d f—— 2 cos (»)
) Gy |22, 550 | PP
<6dI(d)y*/J?, (12)
where we defined
d Ed 2
I(d)zf 9P |2 - 1008 2| (13)
et —mm? (2 |24, (1 — cos p, ) |?
and used the infrared bound®
~ d -1
Sz(p)<(2J Y a —cosp#)) , (14)
=1

in the last step.
Similarly, the contribution from the “error term” is

Y Ei(xpXy)
=1
=4y(p?) >  85,(0z+2)
i m =1
+J4e? Y S0)8,(0y+z+2)
WA
< const (d)y. (15)

Therefore we obtain

(g0 ()
- >2d(1 —=1I(d) +O|—)] 16
o7 > (d) + p (16)

Note that, as J 1J,, y(J)~ 0.

Hence, in order to prove the theorem, we have only to
show that I(d) <3 for d>5, which will be shown in the next
section.

d I(d;1) 1(d;2) I(d)

3 0.505 462 019 7173(1)

4 0.309 866 780 4621(1)

5 0.231 261 624 9680(1) 0.077 397 657 6153(1) 0.622 325 190 7019(1)
6 0.186 160 562 2044(1) 0.042 059 662 6951(1) 0.280221 110 5712(3)
7 0.156 272 330 7983(1) 0.027 893 595 2965(1) 0.178 973 538 3505(4)
8 0.134 830 876 5021(1) 0.020 140 668 5891(1) 0.131 708 765 6684(5)
9 0.118 638 454 0424(1) 0.015 307 074 4570(1) 0.104 380 858 2516(5)
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TABLE II. Integrals L(d;1) and L(d;2).

d L(d;1) L(d;2)

3 0.516 386 059 1520(1)

4 0.239 467 121 8485(1)

5 0.156 308 124 8402(1) 0.934 941 440 3823(1)
6 0.116 963 373 2267(1) 0.514 147 857 0246(1)
7 0.093 906 315 5878(1) 0.366 786 169 5262(2)
8 0.078 647 012 0169(1) 0.289 002 789 7022(2)
9 0.067 746 086 3814(1) 0.239 873031 0144(2)

Ill. PROPERTIES AND ESTIMATES OF THE INTEGRAL
Kd:n) AND /(d)

First, define

T d dp“ d —n
I(din)= II (Z (I—cosp,)} . (7
—mp=1 27T p=1
Applying the identity

f dtt" e *=X"" (X>0, n=12,.),
0

with X = 3¢ _, (1 — cos p,, ), we obtain

Id;n) = Jm dtt" e~ “f(1)°, (18a)
[0}
where
f(t)Ef ﬁe'me:Io(t). (18b)
—r 277'

By the change of variable t = x/d,

w d
d"I(d;n) =J dxx"“e"‘f(%—) =K(d;rn). (19)
0

Then we find
I(d) =K(d;2) —2K(d;1) + 1. (20)

Since f(x/d)? is monotone decreasing in d (see Refs. 10 and
11) and

fix/d)4i1  as d 1o, (21

K(d;n) is monotone decreasing in d (see Ref. 10) and
K(d;n)lf dxx""le *=(n—1)! as d1w. (22)
(V]

Therefore we find
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I(d)\0 as d1e. (23)

We also remark that I'(d;n) diverges if d<2(1 + n). In par-
ticular, I(d) = oo for d<4. The results of numerical calcula-
tions are listed in Tables I and II.

Proofof I(d) <3%:

Case (i) d = 5: Use directly the results of the numerical
calculations (Table I).

Case (ii) d>6: Introducing

L(dn) =K(dn) — (n - 1)!
= J-w dx x"~ ‘e—X[f(:‘-)d— 1]>o. (24)
o d

We can write
I(d) = L(d;2) — 2L(d;1). (25)
As K (d;n) ismonotone decreasing in d, sois L(d). Thus
I(d)<L(d;2)<L(6;2).

By Table I11, L(6;2) <3.

This completes the proof of the theorem for one-compo-
nent systems. [
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ERRATUM

Erratum: Automorphisms of algebraic varieties and Yang-Baxter equations

[J. Math. Phys. 27, 2776 (1986)]

Jean-Marie Maitlard

Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, Tour 16-ler étage,

4, place Jussieu, 75252 Paris Cédex 05 France

(Received 18 November 1986; accepted for publication 31 December 1986)

Page 2779, left column, line 32 from the top, should read
as follows:
model,"® the elliptic parametrization of the model is giv-
The final sentence of Sec. IV A should be replaced by
the following: The genus of an algebraic curve defined in
general by the intersection of a quadric, a cubic, and a quar-

1209 J. Math. Phys. 28 (5), May 1987

0022-2488/87/051209-01$02.50

ticin P, can be calculated from the formula of addition of the
characteristic of Euler—Poincaré...leading to a rather high
genus; in fact the hard hexagon parametrization corre-
sponds to two relations between the previous constants C,,
C,-C,=1 and C, + C, = C;, that reduce the number of
equations to only two, leading to a ruled surface (E X P,).

© 1987 American Institute of Physics 1209



	JMP, Volume 28, Issue 05, Page 0989
	JMP, Volume 28, Issue 05, Page 0991
	JMP, Volume 28, Issue 05, Page 0997
	JMP, Volume 28, Issue 05, Page 1005
	JMP, Volume 28, Issue 05, Page 1016
	JMP, Volume 28, Issue 05, Page 1019
	JMP, Volume 28, Issue 05, Page 1023
	JMP, Volume 28, Issue 05, Page 1030
	JMP, Volume 28, Issue 05, Page 1032
	JMP, Volume 28, Issue 05, Page 1036
	JMP, Volume 28, Issue 05, Page 1052
	JMP, Volume 28, Issue 05, Page 1056
	JMP, Volume 28, Issue 05, Page 1061
	JMP, Volume 28, Issue 05, Page 1069
	JMP, Volume 28, Issue 05, Page 1075
	JMP, Volume 28, Issue 05, Page 1080
	JMP, Volume 28, Issue 05, Page 1089
	JMP, Volume 28, Issue 05, Page 1091
	JMP, Volume 28, Issue 05, Page 1094
	JMP, Volume 28, Issue 05, Page 1097
	JMP, Volume 28, Issue 05, Page 1103
	JMP, Volume 28, Issue 05, Page 1107
	JMP, Volume 28, Issue 05, Page 1114
	JMP, Volume 28, Issue 05, Page 1118
	JMP, Volume 28, Issue 05, Page 1137
	JMP, Volume 28, Issue 05, Page 1140
	JMP, Volume 28, Issue 05, Page 1146
	JMP, Volume 28, Issue 05, Page 1159
	JMP, Volume 28, Issue 05, Page 1164
	JMP, Volume 28, Issue 05, Page 1167
	JMP, Volume 28, Issue 05, Page 1170
	JMP, Volume 28, Issue 05, Page 1175
	JMP, Volume 28, Issue 05, Page 1180
	JMP, Volume 28, Issue 05, Page 1192
	JMP, Volume 28, Issue 05, Page 1198
	JMP, Volume 28, Issue 05, Page 1203
	JMP, Volume 28, Issue 05, Page 1206
	JMP, Volume 28, Issue 05, Page 1209

